
SO F TWA R E I S A CON S TA N T B AT T L E AG A I N S T COM P L E X I T Y.

E R I C E VA N S , DOMA I N - D R I V E N D E S I G N

I C A N ’ T U N D E R S TA N D WH Y P EO P L E A R E F R I G H T E N E D O F N EW I D E A S .

I ’ M F R I G H T E N E D O F T H E O L D ON E S .

J O HN C AG E

Y E S .

A R T HU R WH I T N E Y

S T E P H E N TAY LO R

P O S T ATOM I C

L AM B E N T T EC HNO LOG Y

Copyright © 2023 Stephen Taylor

published by lambent technology

http://lambenttechnology.com

First printing, March 2023

http://lambenttechnology.com

Contents

I 11

yq? 15

A whirlwind tour 21

Level-3 description 41

q and kdb+ 45

How we roll 47

II 51

6

also 53

Lists 55

Parse trees 63

Apply and Index 67

Projection 79

Composition 83

Implicit iteration 87

Iterator syntax 95

Map iterators 103

Accumulators 107

7

III Answers 111

Answers to Also 113

Answers to Lists 117

Parse trees 121

Answers to Dot 123

Answers to Projection 129

Answers to Composition 131

Answers to Implicit iteration 133

Answers to Map iterators 141

Answers to Accumulators 143

9

Dedicated to Kenneth E. Iverson, and

laconic Norwegians everywhere.

Part I

4u?

This book is for you if you have already learned some of the q program-
ming language and would like to become fluent.

Improving your skill with a language means engaging with
other speakers. This is as true of programming languages as it is of
natural languages.

Among people who speak French, my French (such as it is) im-
proves steadily. This is how you and I learned our native languages.
Learning this way comes naturally to us, with little effort.

My French is also improved by watching French films and TV. I hear
and remember useful ways to say things.

Finally, my French improves really fast when I write – provided
someone corrects my work.

All this applies to you in learning q.

If you are lucky enough to work with others writing q you will
gradually learn what they know. You will learn to read and write q
much as they do. This will be little effort, and you will all read each
other’s code easily.

But there is a catch.

You will learn no more than they know. And it might appear to be

14 post atomic

all that there is to know.

I would be in the same situation if I spoke French only with other
English people who learned it at school. We would all speak school
French to each other.

Happily there is great French TV drama on streaming services,
newspapers and magazines to read online, and I can get as many
novels in French as I can read. I’m all set. I can read and hear a
wide range of French.

With you and q things are more limited.

First, not many people write q. And most of us are bunched to-
gether in capital-markets technology. If you are not already work-
ing among us, you‘re unlikely to bump into us.

Second, (whisper it) most of us write school-level q. 1 1 The historical explanation for
this is in Appendix A.

The point here is that very few people write fluent q, and most of
the rest of us find their code so surprising (at best) or baffling (at
worst) that we long ago dubbed them “the q gods”. And so the first
q textbook got its consoling title Q for Mortals.

I am not deprecating Jeff Borror’s excellent textbook, nor Nick
Psaris’ excellent Q Tips. In fact, if you have read neither, you
should probably put this book down and read one, because I am
going to assume you know at least that much.

This book is not an introduction to q.

Prometheus is a hero from Greek myth. He brought down fire from
heaven for humans to use.2 This book is a Promethean project. Flu- 2 Prometheus got punished for it.

I’m hoping to avoid that.ent q is not reserved to a race of divine beings. Like any language,
it yields to study and practice. Go for it.

Lastly, you might have come here with another agenda. If
you are curious about programming languages and want to know
what is special about q, the next chapter is a high-level summary.

yq?

Besides access to kdb’s performance, is there any reason to prefer q to
more widely-used programming languages?

Some simple examples may help you to decide whether you would
like to code in q.

Hello world

The classic intro program3 in C prints hello, world in the command 3 The C Programming Language,
Brian M. Kernighan & Dennis M.
Ritchie, 1978

shell.

#include <stdio.h>

main()

{

printf ("hello , world\n");

}

In q:

q)"hello , world""hello , world"

The default behaviour of the q repl
4 is to evaluate the line and 4 read-evaluate-print loop

display the result.

16 post atomic

Pascal’s Triangle

A Python program to print seven rows of Pascal’s Triangle.

Set the number of rows for Pascal 's triangle

num_rows = 7

Initialize the first row

row = [1]

Print the first row

print(row)

Generate the remaining rws

for i in range(1, num_rows):

Initialize the row with the first element

new_row = [1]

Calculate te values for the rest of the row

for j in range(1, i): new_row.append(row[j-1] + row[j])

Add the last element to the row

new_row.append (1)

Print the row

print(new_row)

Set the current row as the previous row for the next iteration

row = new_row

In q: 6{(+)prior x,0}\1

q)6{(+) prior x,0}\1

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

The lambda appends a zero to its argument (x,0) then adds each
item of it to the preceding item ((+)prior). It does this six more
times (6{...}\), returning the result of each iteration.

yq? 17

Fibonacci Series

A C program to print the first ten numbers of the Fibonacci Series.

#include <stdio.h>

int main() {

int i, n = 10, t1 = 0, t2 = 1, nextTerm;

printf (" Fibonacci Series: ");

for (i = 1; i <= n; ++i) {

printf ("%d, ", t1);

nextTerm = t1 + t2;

t1 = t2; t2 = nextTerm;

}

return 0;

}

In q: 8{x,sum -2#x}/0 1

q)8{x,sum -2#x}/0 1

0 1 1 2 3 5 8 13 21 34

Above, the lambda appends to its argument (x,) the sum of its last
two items (sum -2#x). The Over iterator (8{...}/) applies that to
the seed 0 1 eight times and returns the final result.

Fahrenheit-Celsius

Convert degrees Fahrenheit to Celsius.5 5 from Kernighan & Ritchie,
op. cit.

#include <stdio.h>

#define LOWER 0 /* lower limit of table */

#define UPPER 300 /* upper limit */

#define STEP 20 /* step siz */

/* print Fahrenheit -Celsius table */main()

{

int fahr;

for (fahr = LOWER; fahr <= UPPER; fahr = fahr + STEP)

18 post atomic

printf ("%3d %6.1f\n", fahr , (5.0/9.0)*(fahr -32));

}

In q:

q)flip 1{{x*`long$y%x}[.1](5%9)*x -32}\20* til 16

0 -17.8

20 -6.7

40 4.4

60 15.6

80 26.7

100 37.8

120 48.9

140 60f

160 71.1

180 82.2

200 93.3

220 104.4

240 115.6

260 126.7

280 137.8

300 148.9

Analysing the q:

q)20* til 16

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

q){(5%9)*x -32}20* til 16 / F to C

-17.77778 -6.666667 4.444444 15.55556 26.66667 37.77778 48.88889 60 71.11111 ..

Above, the lambda {(5%9)*x-32} concisely expresses the conversion
from Fahrenheit to Centigrade. (Iteration through the items of x is
implicit.)

Round to one decimal place: divide y by the rounding interval x
(0.1), cast to long, multiply by x: {x*`long$y%x}[.1].

The Scan iterator 1{...}\ returns the results of applying the
lambda zero and one times6; that is, the lambda’s argument and 6 A form sometimes called ‘the

Zen monks’:
— How many Zen monks does it
take to change a lightbulb?
— Two: one to change it, one not to
change it.

its result, a list of two vectors; i.e. a two-row matrix. The flip

keyword flips it into a two-column table.

yq? 19

Code golfers and typists with sore fingers will relish the brevity.
But the point of these comparisons is not that qbists do less typing.

The semantics of the q code is all about the algorithm, uncluttered
by loop counters. And its brevity dramatically expands the range
and complexity of code that can be typed and explored in the repl,
outside the edit-load-compile-run cycle.

As Arthur Whitney, designer of k and q, put it:7 7 Keynote address to the British
APL Association conference at
the Royal Society, London, 2004

It is theoretically impossible for a k program to outperform hand-
coded C, because k compiles into C. For every k program there is
an equivalent C program that runs exactly as fast. Yet k programs
routinely outperform hand-coded C. How is this possible? Because
it is easier to find your errors in four lines of k than in four hundred
lines of C.

A whirlwind tour of q

This book is for qbies who want to raise their understanding of q
and skills with it – to become qbists.

But perhaps you picked up this book just to satisfy your curiosity
about the language. You’ve heard something about it. What makes
it so special?

So this is a whirlwind tour of the language. It is not intended
as a tutorial, though if you already know several quite different
programming languages, it might be all you need.

Q is an interpreted language, like Python and JavaScript. It
presents a repl

8 and a prompt q). It evaluates the expression 8 Read-evaluate-print loop

you type and displays the result.

q)2+2 / who knew?

4

q)til 5 / gimme five

0 1 2 3 4

q)5#2 3 / take five

2 3 2 3 2

Data types

Q is designed for speed with very large data sets. Loose datatyping
would compromise efficiency, as primitives silently cast from one

22 post atomic

type to another. Automatic type conversion is minimised by fine-
grained data types.

An atom is the smallest unit of data. An atom cannot be indexed.
There are 18 types of data atoms.

boolean 0b

guid

byte 0x00

short 0h

int 0i

long 0j, 0

real 0e

float 0.0, 0f

char " "

symbol `
timestamp 2023.03.16 D11 :51:26.923000000

month 2000.01m

date 2000.01.01

datetime 2023.03.16 T11 :52:07.320

timespan 00:00:00.000000000

minute 00:00

second 00:00:00

time 00:00:00.000

There is no String datatype. What qbists call a string is a vector of
characters. (See Data Structures below.)

A symbol atom is a backtick ` followed by zero or more characters.
It is used to enumerate repeated strings such as stock codes.

`goog / Google

`ibm / IBM

`msft / Microsoft

A symbol atom displays as text, but the underlying data is an
integer index into a master list of strings called the symlist.

The type keyword returns the type of its argument as a short. A
negative sign indicates an atom.

q)type each (3;3.14159;"q";`q;2023.03m)

a whirlwind tour 23

-7 -9 -10 -11 -13h

The Cast operator casts data between types. Its left argument is the
target datatype, as a short, char or symbol from the table above.

q)9h$999

999f

q)"j"$3 .14159

3

q)`byte$"q"
0x71

The string keyword returns a string representation of an atom.

q)"c"$3 .14159

"\003"

q)string 3.14159

"3.14159"

q)string `ibm
"ibm"

q)string 2000.01.01

"2000.01.01"

Temporal data

Dot notation is a convenience for temporal data.

q)show now:.z.d+.z.t

2023.03.16 D12 :15:19.562000000

q)(now.minute;now.second;now.month)

12:15

12:15:19

2023.03m

Functions are first-class objects

Functions are first-class objects in q, so they too are atoms.

Functions include operators, keywords, projections, compositions,

24 post atomic

and lambdas. Each has its own datatype.

q)type each (+;2*; type ;+/;{x*y+z})

102 104 101 107 100h

q)/ operator;projection;keyword;derived function;lambda

Data structures
Arguably, dictionaries are a more
general form of list in which you
control the index.Atoms can be arranged in data structures. There are two types, lists

and dictionaries.

General lists

A list is zero or more items separated by semicolons and embraced
by parentheses. A list item is an atom, list or dictionary.

Some lists:

(1;2;3;4)

(`ibm;`msft;`aapl)
(" Kenneth ";" Iverson ";1920.12.17; ` Canada;(`Harvard;`IBM;`IPSA))
(+;-)

(sum;avg)

() / general empty list

List notation does not describe a list with one item.

q)type (3) / atom

-7h

You can make a one-item vector with the Take operator.

q)type 1#3

7h

You can make a one-item list by appending the item to the general
empty list.

q)type (),`ibm

a whirlwind tour 25

11h

Or you can use the enlist keyword.

q)type enlist[`ibm]
11h

Vector literals

A vector is a list in which all the items are data atoms of the same
type. Vectors and the efficiency of vector operations sit at the heart
of q.

Q syntax permits vectors to be written as literals. For example:

100011110001b / boolean

0x03040506 / byte

3 4 5 6h / short

3 4 5 6i / int

3 4 5 6 / long

3 4 5 6e / real

3 4 5 6f / float

3 4 5. 6 / float

"3456" / char

`three `four `five `six / symbol

2000.03 2000.04 2000.05 2000.06m / month

00:00:03 00:00:04 00:00:05 00:00:06 / seconds

A vector has the datatype of its items. The type keyword returns
this as a positive short.

q)type 3 4 5 6

7h

q)type `quick `brown `fox
11h

The type of a general list is 0h. Only data atoms form vectors.

q)type (" Kenneth ";" Iverson ";1920.12.17; ` Canada;(`Harvard;`IBM;`IPSA))
0h

q)type (+;-)

26 post atomic

0h

Dictionaries

A dictionary is a pair of same-length lists: a list of keys and a list of
values.

Key lists are often symbol vectors, but the structure is perfectly
general: a dictionary can be made of any two lists of the same
length, using the Dict ! operator.

q)show d:`ATW `KEI `SJT!(" Whitney ";" Iverson ";" Taylor ")
ATW| "Whitney"

KEI| "Iverson"

SJT| "Taylor"

q)type d / a dictionary has type 99

99h

Tables

A table is a list of named same-length lists.

q)species:`cow `duck `python `snail
q)genus:`mammal `bird `reptile `mollusc
q)feet:4 2 0 1

q)show a:([] species;genus;feet)

species genus feet

cow mammal 4

duck bird 2

python reptile 0

snail mollusc 1

It is also a list of like9 dictionaries. 9 Like dictionaries have identical
keys. (Order matters.)

q)c:`species `genus `feet!(`cow;`mammal ;4)
q)d:`species `genus `feet!(`duck;`bird ;2)

a whirlwind tour 27

q)p:`species `genus `feet!(`python;`reptile ;0)
q)s:`species `genus `feet!(`snail;`mollusc ;1)

q)show b:(c;d;p;s)

species genus feet

cow mammal 4

duck bird 2

python reptile 0

snail mollusc 1

q)a~b / does a match b?

1b

q)type a

98h

These two views of a dictionary are equally valid.

Tables are first-class objects in q.

Indexing

The indices of a list are origin-zero ordinals.

q)`cow `duck `python `snail [3 1]

`snail `duck

Indexing is right atomic: the result of indexing a list mirrors the
index expression.

q)" #"[(1111b;1001b;1111b;1001b;1001b)]

"####"

"# #"

"####"

"# #"

"# #"

The indices of a dictionary are its key.

q)d [`SJT `ATW]
"Taylor"

28 post atomic

"Whitney"

A matrix is a list of same-length lists of uniform type.

q)show m:3 5#15?100

12 10 1 90 73

90 43 90 84 63

93 54 38 97 88

Its items are rows.

q)m[2 1]

93 54 38 97 88

90 43 90 84 63

A second index indexes the columns

q)m[2 1;2]

38 90

Omitting an index selects all values.

q)m[2;]

93 54 38 97 88

q)m[;]

12 10 1 90 73

90 43 90 84 63

93 54 38 97 88

Indexing is functional; the brackets above are syntactic sugar. See
Apply/Index below for more on this.

Applying a function

Many q tokens are overloaded
by rank; that is, they denote
different operators according
to the number of arguments
passed. Such functions are called
variadic.

A function is an operator, keyword, composition, projection or
lambda. It may have from zero to eight arguments; the number of
arguments it takes is known in q as its rank.

a whirlwind tour 29

Bracket syntax

You can always apply a function to an argument list.

Like a general list, an argument list is zero or more items separated
by semicolons, embraced not by parentheses but by brackets.

q)*[2;3]

6

q),[`ibm;`goog `msft]
`ibm `goog `msft
q)count["quick"]

5

q)ssr["quick brown fox";"br?wn";" brave"]

"quick brave fox"

Infix syntax

Binary operators and keywords can also be applied infix. This is
good q style.

q)2*3

6

q)`ibm ,`goog `msft
`ibm `goog `msft

Republic of functions

The right argument of a function applied infix is the result of
evaluating everything to its right.

There is no precedence hierarchy among functions.

q)2*3+100

206

Every programming language follows this rule10 when assigning a 10 I am grateful to Arthur Whit-
ney for this observation.value to a name; the value assigned is everything to the right of the

30 post atomic

assignment token. Like other Iversonian languages (A P L, J , k) q
simply follows this practice consistently.

You can override this with parentheses; but good q style prefers
recasting an expression to avoid parentheses.

q)(2*3)+100

106

q)100+2*3

106

Apply and Apply At

Function application has a functional form: the Apply operator.
(Brackets are syntactic sugar.) The Apply operator, written as a dot,
applies a function to a list of its arguments.

q).[*;2 3]

6

q).[ssr;(" quick brown fox";"br?wn";" brave ")]

"quick brave fox"

q).[count;enlist ["quick "]]

5

Apply is a binary operator, and can be applied infix.

q)(*) . 2 3

6

q)ssr . ("quick brown fox";"br?wn";" brave")

"quick brave fox"

q)count . enlist ["quick"]

5

Enlisting the one argument of a unary keyword such as count is
tedious, so the Apply At operator is more syntactic sugar: it applies
a unary function to its argument.

q)count @ "quick"

5

a whirlwind tour 31

Prefix syntax

Prefix syntax lets us elide the infix use of Apply At.

q)count "quick"

5

This is a considerable blessing. Many important transformations
can be expressed as a train of functions, each operating on the
result of the next. In common mathematical notation one writes
the result of applying function f to the result of function g applied
to the result of function h applied to x simply as f gh(x). In most
programming languages you can write this as f[g[h[x]]]. In q you
can write it as f g h x.

Good q style

Every programming language lets you assign a name to a value so
you can refer to it without computing it again. The value assigned
to the name is everything to the right of the assignment token. Most languages perpetuate the

unfortunate choice of = as the
assignment token, overriding its
familiar meaning.

Q extends this convention systematically. In infix and prefix syntax
the right argument is the value of everything to the right.

You can of course interrupt with parentheses and brackets, group-
ing expressions for evaluation. But reading is interrupted as well,
contrary to the principle of notation as a tool of thought.11 11 See Kenneth E. Iverson, “No-

tation As A Tool Of Thought”,
ACM Turing Award lecture, 1979In the best q style evaluation of an expression begins on the right

and proceeds smoothly to a result or an assignment on the left.

Index and Index At

A foundational insight of q is the isomorphism of arrays and func-
tions. An array is a function of its indices.

q)sqrs:0 1 4 9 16 25 36 49 64 81 / array

32 post atomic

q)sqr:{x*x} / function

q)sqrs 5 2 9 / array

25 4 81

q)sqr 5 2 9 / function

25 4 81

This isomorphism is reflected in q syntax.

q)sqrs[5 2 9] / array

25 4 81

q)sqr[5 2 9] / function

25 4 81

q)sqrs@5 2 9 / array

25 4 81

q)sqr@5 2 9 / function

25 4 81

Above we see that the syntax of Apply At and Index At are the
same. And they are both denoted by @.

Similarly for Apply and Index, both denoted by a dot.

q)show M:til [3]*/:\: til 5

0 0 0 0 0

0 1 2 3 4

0 2 4 6 8

q)M . 2 3 / Index

6

q)(*) . 2 3 / Apply

6

Implicit iteration

Map iteration is implicit in most operators. The operator applies
between corresponding elements of two lists.

q)2 3 4+5 6 7

7 9 11

a whirlwind tour 33

An atom maps to a list of any length: scalar extension pairs the atom
with each element of the list.

q)4+5 6 7

9 10 11

For many operators the implicit iteration is atomic: it recurses to
the level of atoms.

q)(2 3;(4;5 6);(7 8;9)) + (1000;(4000 3000;4000);5000)

1002 1003

4004 3004 4005 4006

5007 5008 5009

And there are useful variations.

q)(" brown ";" brawn ";" brave")like"br?wn"

110b

q)4 5 6 7 within 5 6

0110b

q)"abc"in"quick brown fox"

011b

q)(" brown ";"dog")in("quick ";" brown ";"fox")

10b

Iteration operators

When implicit iteration is not enough, you can specify iteration
with a group of operators known as iterators.12 The iterators are 12 In k, and previously in q, these

are known as adverbs.unary operators with postfix syntax.

An iterator takes a single argument on its left, and returns a
derived function.

There are two groups of iterators, corresponding (very) roughly to
Map and Reduce. They are known as the map and the accumulator
iterators.

Map iteration is inherently parallel: a computation is performed
for each item of a list; the computations are independent of each

34 post atomic

other.

Accumulator iteration is progressive: a sequence in which the
result of one computation passes to the next.

Map iterators

The map iterators are Each ' and its variants. A map iterator
derives a function that iterates through the items of a list.

q)count ("quick ";" brown ";"fox")

3

q)ce: count ' / derived function: count each

q)ce ("quick ";" brown ";"fox")

5 5 3

It is not necessary to name the derived function; you can apply it
directly.

q)max '[(" quick ";" brown ";"fox")]

"uwx"

A derived function has infix syntax.

q)(" quick ";" brown ";"fox")?'"uio" / find "u" in "quick", etc

1 5 1

q)(" quick ";" brown ";"fox")?'"o" / find "o" in each string

5 2 1

In the last example above, scalar extension pairs the right-argument
atom with each item of the left argument.

Iterators Each Left \: and Each Right /: map non-atomic argu-
ments similarly.

q)1 2 */:10 100 1000 / Each Right

10 20

100 200

1000 2000

q)1 2 *\:10 100 1000 / Each Left

10 100 1000

a whirlwind tour 35

20 200 2000

q)"ab",/:"cde" / Each Right

"abc"

"abd"

"abe"

q)"ab",\:"cde" / Each Left

"acde"

"bcde"

Each Prior ': maps each item to the previous item.

q)+ ':[1 1]

1 2

q)+ ':[1 2 1]

1 3 3

q)+ ':[1 3 3 1]

1 4 6 4

Parallel Each ': applies a unary function to each item of a list,
distributing the computation between worker processes.

Accumulators

The accumulators are Scan \ and Over /. The latter can be consid-
ered an edge case of Scan.

Scan is an iterator, so it takes a single argument on its left, from
which it derives a new function.

The first argument of the derived function is the seed, or initial con-
dition. The result of the first iteration becomes the first argument
of the next iteration. And so on.

q)0 |\ 3 -40 7 2 4

3 3 7 7 7

Above, the derived function |\ (Greater Scan) has infix syntax and
a left (first) argument of zero. The result is calculated as

0|3 => 3

36 post atomic

3|-40 => 3

3|7 => 7

7|2 => 7

7|4 => 7

With a ternary (rank-3) argument, Scan derives a function that
iterates successive first arguments through both right-argument
lists.

q)ssr\[" quick ";"cir";"rac"] / string search -replace

"quirk"

"quark"

"quack"

With a unary, Scan derives a function that has only an initial state;
there is no list through which to iterate. How, then, is iteration
terminated?

Converge If no termination is specified, iteration continues until
the result of an iteration matches either the previous result or the
initial argument.

q)neg \[1]

1 -1

q){x*x}\[.01]

0.01 0.0001 1e-08 1e-16 1e-32 1e-64 1e-128 1e-256 0

Do All derived functions have infix syntax. An integer left argu-
ment is the number of iterations after which to terminate.

q)5{+ ':[x ,0]}\1

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

While If the derived function’s left argument is a unary test to be
applied to the result of each iteration, iteration will continue until
the test returns zero.

a whirlwind tour 37

q){128>sum x}{+ ':[x ,0]}\1

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

Over The accumulator derives a function that performs exactly the
same computation as Scan but returns only the result of the last
iteration.

q)ssr/[" quick ";"cir";"rac"]

"quack"

q){128>sum x}{+ ':[x ,0]}/1

1 7 21 35 35 21 7 1

That is, for applicable value f

f/[x] <==> last f\\[x]

Apply/Index dualism means data structures can also be iterated.

Let itinerary represent the stages of a journey.

q)itinerary:`London `Berlin `Rome `Paris!`Paris `London `Berlin `Rome
q)show itinerary:`London `Berlin `Rome `Paris!`Paris `London `Berlin `Rome
London| Paris

Berlin| London

Rome | Berlin

Paris | Rome

q)itinerary\[`London] / start and end in London

`London `Paris `Rome `Berlin

q)3 itinerary\`Rome / 3 stages from Rome

`Rome `Berlin `London `Paris

q)(`Rome <>) itinerary\`London / London to Rome

`London `Paris `Rome

38 post atomic

q)continue:`London `Berlin `Rome `Paris !1101b / where not to stay

q)continue itinerary\`London
`London `Paris `Rome

Projection

A function of rank N requires N values as its arguments.

Applying it to fewer values projects the function onto them.

The rank of the projection is the number of omitted arguments.

q)triple: 3*

q)halve: %[;2]

q)hyphenate: ssr[;" ";"-"]

q)triple 15

45

q)halve 49

24.5

q)hyphenate "quick brown fox"

"quick -brown -fox"

Lambdas

A lambda in q is a user-defined function, written as an optional
argument list followed by a list of expressions separated by semi-
colons, all embraced by curly brackets. The result of evaluating the
last expression is returned as the result of the function.

The argument list is a list of names separated by semicolons and
embraced by brackets; it names the arguments of the function and
determines its rank. The argument list may be omitted and default
argument names x, y and z used.

{[a;b] a2:a*a; b2:b*b; a2+b2 -2*a*b}

{(x*x)+(y*y)-2*x*y}

a whirlwind tour 39

In a script, a lambda can be written across multiple lines provided
that the continuation lines are indented. (Two spaces are conven-
tional.)

foo:{[a;b] a2:a*a;

b2:b*b;

a2+b2 -2*a*b}

Composition

Applicable values (functions, lists, dictionaries, projections) can
be composed by juxtaposition and a general null as suffix. All the
values except the last must have rank 1. The composition inherits
the rank of the last value.

q}ds:2* (+):: / double sum

q)ds[2;3]

10

q)dssr: {x,x} ssr :: / duplicate ssr

q)dssr[" quick ";"i";"a"]

"quackquack"

qqq

In which we summarise what distinguishes q from other programming
languages

This chapter is for you if you didn’t open the book to improve
your q skills, but just want to know something about the language.
What’s the fuss about?

The chapter is called qqq because this is what some authors call a
“level three” description. We assume you are familiar with several
programming languages already and are looking for points of
comparison.

Q is an undocumented proprietary blend of APL and Lisp that
supports the kdb+ column-store timeseries database. For three
decades kdb+ has been the fastest timeseries database on Wall St.

This has been achieved by a few very experienced people imple-
menting an abstraction with powerful ‘mechanical sympathy’.

K code is extremely terse. For example, the lambda {x~|x} tests
whether a string – or in fact any type of list – is a palindrome.

Q is its query and programming language. (Both q and k are
spelled lower case. Sorry.)

It is a DSL embedded in k that

42 post atomic

• supports SQL-like queries

• replaces unary overloads of binary operators with English
keywords; for example, the q version of the lambda above is
{x~reverse x}

Getting started with k was easiest for coders already familiar with
Iverson Notation as either APL or J. Wrapping q around it made it
easier to get people started and productive with q.

Distinctive features of q:

• Functions are first-class objects and can be included in data
structures, which can thus form part of the flow of control.

• Dictionaries (a key list paired with a value list) are first-class
objects.

• Tables are first-class objects, conceptually both a dictionary of
column names (key) and a list of columns (value) and a list of
same-key dictionaries.

• Unlike SQL sets, q tables are ordered, which simplifies queries on
timeseries.

• A list can be considered a degenerate form of dictionary, in
which the key is its indices.

• Because a list (or dictionary) can be considered a function of its
key, the same syntax applies a function and indexes a data struc-
ture. This syntax is functional; brackets for function arguments
and array indexes are both syntactic sugar.

• Operators and other functions have no precedence hierarchy. As
in its ancestor language APL, the argument of a unary function
(or the right argument of a binary) is the result of evaluating the
entire expression to its right.

• Prefix notation (also inherited from APL) allows f[x] to be
written f x and thus f[g[2+h[x]]] as f g 2+h x with significant
gain in clarity.

level-3 description 43

• Most primitives iterate implicitly over lists, dictionaries and
tables.

• Most other common forms of iteration (Each, Do, While, Con-
verge) are provided by iteration operators; loops are rarely
written.

• The q parser converts q expressions into parse trees for evalua-
tion. Parse trees are q lists. Both the parser and the evaluator are
q keywords.

• Query syntax is the same for tables in memory and on file.

The above is about the q language only. There is also:

• Interprocess communication baked into primitives: q processes
talk by HTTP.

• Persisted tables use the filesystem simply: a table t with columns
a, b, and c appears in the filesystem as directory t with files a, b,
and c.

• Data serialisation is the fastest available: none.

If this has raised your interest in q, consult the learning resources
in Appendix B.

q and kdb+

In which we consider what we will and won’t learn here

Coders writing q applications have four bodies of knowledge to
master.

1. Language How to write q that works, exploits its speed, and
minimises maintenance costs.

2. Database You need to understand the implications of persisting
tables to the filesystem13 and arrange your databases accord- 13 Roughly speaking, kdb+ is

what happens when q tables
are persisted to the filesystem.
—Jeffry A. Borror, Q for Mortals

ingly. You might have maintenance procedures to consider.

3. Development How to handle errors, secure communication
between processes, use the debugging tools.

4. Architecture How to design applications as co-operating kdb+
processes.

Of course, you might not be doing all this. You might, for example,
need only to write queries or analytics that read existing data
structures.

Either way, this book is about only the firsttopic: the q language.

how

In which we discuss pedagogy: how shall we proceed?

We shall ground our learning in the formalities of syntax to get
a thorough understanding of the code we write.

You didn’t need this to get started with q. We need it now to un-
derstand what q makes possible, especially beyond the bounds of
whatever we have learned already.

We shall exploit a key skill you were born with – play.

Do not underestimate play. Play is how we explore new capabilities.
The fox cubs tumbling in my garden are using play to explore and
master their hunting skills. (It also looks fun.)

Matrix mathematics was dicovered or devised in academic play
well before anyone found a use for it.

Cultivate your curiosity about what it is possible to express,
whether or not you see an immediate use for it. Forget your readers! Forget

self expression! Poetry is re-
search into the unfathomable.
— Aase Berg

Get into the habit of thinking about alternative ways to code some-
thing. Most times you will find the clearest efficient expression.
And, occasionally, a door will open and you will see a better algo-
rithm altogether.

48 post atomic

I knew that

You should encounter much you recognise. This book is written for
people already using q.

But some of it will have implications that are new to you. (That’s
why this book is written for people already using q.)

Thinking in vectors

In particular, we shall be working to shift your thinking.

Most programming languages train your brain to break a solution
into small pieces and loop through them. Joel Kaplan on the Array
Cast called this “one potato, two potato” thinking. arraycast.com

We’re aiming to retrain your brain to also see vector solutions.
Vector solutions in q are usually significantly faster than loops.
They benefit from q’s ability to exploit vector instruction sets in the
hardware.

Vector expressions: faster, shorter, clearer to write.

But your brain may have been trained not to see them. We might
have a certain amount of unlearning to do.

Each chapter ends with some questions, which are answered and
discussed in Part III. The separation is to encourage you to work on
the questions rather than skimming through.

Busy you can pick up a lot by skimming through the answers, but
it does very little to retrain your brain away from one potato, two
potato.

The answers given are usually shown assembled in steps, because
however interesting the solutions might be, the thought process
that discovers them is more interesting. This is what you miss if
you can’t collaborate with experienced qbists; this is what you

how we roll 49

would miss by skimming; this is what you came here for.

Study and play with the examples and questions, however simple
they may seem.

On the beach

Read this book with a q session open. Type stuff. Type the ex-
amples. Try some other stuff. Try some variations to see if the
examples really work the way you think they do. Get playful. And
curious.

Go barefoot. Maybe you’re used to working in an I D E or a Jupyter
notebook. Instead, consider running q in the command shell. Just See code.kx.com/q for instruc-

tions.you and the interpreter. Barefoot on the beach: sunshine and fresh
air.

Does this sound like a dumb way to work? It’s how I’ve seen Arthur
Whitney, q’s original implementer, work: a few command-shell and
text-editor windows; nothing else.

Back to work

After the play we shall get down to work. Part IV puts the lessons
into practice with two applications as case studies.

They are both small problems, but non-trivial. Neither is drawn
from the world of capital markets in which q grew up. They are
both examples of q used for general-purpose programming; small
but substantial enough to be useful.

In the first we use q to analyse a webserver’s access-request logs.
Analytics is the most common use of q so far, so this is likely to feel
like familiar ground.

In the second we use q as an editor’s tool to scan a Markdown text
corpus for problems. Textual analysis is more usually prime terri-

50 post atomic

tory for regular expressions but here we need to derive structure,
and apply rules according to whether we’re looking at a heading,
body text, an embedded code string, or a code block.

Part II

also

To join what must also be kept separate we need a separator. In q
that is the humble semicolon ;.

Four syllables seems a lot for one character. Perhaps we should
simply call it Also.

Many characters are overloaded in q and mean different things in
different contexts. Not so with Also, which is always and only a
separator.

It separates the items of a list.

(42;`life `death `meaningoftheuniverse ;"Deep Thought ")

It separates the arguments of a function.

*[5 6;7]

ssr[read0 `h2g2.txt;" Douglas Adams ";" Jeffry Borror "]

It separates the indices of a list. A table is a list of dictionaries.

M:M*/:\:M:til 10

M[5 6;7]

It separates the expressions in a lambda.:

{x2:x*x;y2:y*y;(x2-y2)+2*x*y}

And its arguments.

54 post atomic

{[a;b](a*a)+(2*a*b)-b*b}

It separates the expressions in an expression list: Cond returns a result but is a
control structure, not a function.
A functional way to return an
atom as a singleton list is to join
it to an empty list.

$[0<type x;enlist x;x]

Below, what is the initial value of i – and why?

while[10>i+:1; -1" ",string i]

Questions

1. When should a space follow a semicolon?

2. When should a semicolon follow an expression?

3. What is the last expression in an expression list?

4. Is ; really a binary operator that returns a list? How would you
know?

5. Why does the parse tree for (2;3) have enlist as its first item?

Lists

Q has a range of data types but only three data structures: atom,
list and dictionary.

An atom is well named: it is indivisible. A single integer, byte, bit,
symbol, character, timestamp. . . whatever. The point is: while you
may be able to cast it to another type or derive other values from it
(e.g. seconds or years from a timestamp) there’s only one of it.

A list has multiple items and so can be indexed. This is true even
if the number of items is zero. You can index an empty list; you
cannot index an atom.

A dictionary is a pair of lists. One (key) is the index to the other
(value), so it is a mapping from one list to another. Provided the key values are

unique, that is. Duplicates in the
key make results unpredictable.Tables are first-class objects in q but they too are lists: a table is a

list of like dictionaries; that is, each item of a table is a dictionary,
and all the dictionaries have the same key.

q)(`a`b!1 2;`a`b!3 4) /list of like dictionaries

a b

1 2

3 4

q)(`a`b!1 2;`b`a!4 3) /list of unlike dictionaries

`a`b!1 2

`b`a!4 3

56 post atomic

List notation

In the previous chapter we saw the parse tree for a very simple list.

q)parse "(2;3)"

enlist

2

3

First surprise: (2;3) is not just an identity for enlist[2;3]; list
notation is actually syntactic sugar for enlist.

That has some implications.

First, we see enlist is variadic. It takes as many arguments as we
want items in the result. If this seems unfamiliar, it’s because we
use it mostly as a unary.

We know a function is limited to eight arguments. We also know a
list can have more than eight items. Does the eight-argument limit
not apply to enlist?

q)enlist [1;2;3;4;5;6;7;8;9;10]

1 2 3 4 5 6 7 8 9 10

It does not.

But if you apply enlist the limit, er. . . applies.

q).[enlist] til 8 / Apply enlist - a no-op

0 1 2 3 4 5 6 7

q).[enlist] til 9 / a step too far

'rank

[0] .[enlist] til 9

^

If list notation is syntactic sugar for enlist, then a list with missing
items should be a projection.

q)type (`a;;`c)
104h

lists 57

It is. Which suggests you could use it as a projected function.

q)(`the;;`brown;) . `quick `fox / list notation

`the `quick `brown `fox

q)`quick `slick `crafty(`the;;`brown;)'`fox `dog `badger
the quick brown fox

the slick brown dog

the crafty brown badger

q)5(`abc;)/`x`y`z
`abc
(`abc;(`abc;(`abc;(`abc;`x`y`z))))

q)(;`abc;)/[`v`w`x`y`z]
((`v`abc `w;`abc;`x);`abc;`y)
`abc
`z

Lists are entirely general. A list item is an atom, a dictionary,
or a list.

Following Borror’s usage14, in a simple list every item is an atom of 14 Q for Mortals

the same datatype. Here we shall call them vectors.

Vectors get stored and processed efficiently in q.

This is so valuable that general lists get converted silently to vectors
when possible.

q)type a:(3;"a";4) / general list

0h

q)type b:(3;"a";4) 0 2 / vector of longs

7h

This can surprise you. If a list you suppose general has been con-
verted to vector you will not be able to amend an item of a different
datatype.

q)b[1]:`new / b is a vector of longs

'type

58 post atomic

[0] b[1]:`new
^

Recall that q has no string datatype. We use the term string in a
loose and popular sense to mean a char (character) vector. A ‘list of
strings’ is nothing but a list of char vectors. The type of such a list
is 0h: a general list.

A matrix is a list of same-length vectors of the same datatype.
Nothing constrains the rows to be of the same length.

q)show M:4 cut til 12 / 3x4 matrix

0 1 2 3

4 5 6 7

8 9 10 11

q)@[M;1; ,;]99 / not a matrix

0 1 2 3

4 5 6 7 99

8 9 10 11

A table is a collection of named same-length vectors.

Column names conform to the same rules function and variable
names do.

Watch Out Giving a table column the name of a q keyword breaks
qSQL queries.

q)show t:flip `count `next `prev!4 cut til 12 / NO NO NO

count next prev

0 4 8

1 5 9

2 6 10

3 7 11

q)select count*2,prev+3, next -1 from t

'type

[0] select count*2,prev+3, next -1 from t

^

lists 59

Vector literals of some datatypes have their own notation. Use it,
because using general list notation prompts your reader to expect
something other than a vector.

Indexing lists and dictionaries

A list is a list; a dictionary is a pair of same-length lists,

A dictionary is a mapping from its key list to its value list. In
mathematical terms, it is a function: its domain is its key; its range,
its value.

A list is also a mapping, but the key is implicit: the indices of its
items.

q)v:`the `quick `brown `fox / vector

q)d:0 1 2 3!`the `quick `brown `fox / dictionary

q)v 2 0 3

`brown `the `fox
q)d 2 0 3

`brown `the `fox

Above, d mimics a list by setting as its key the til count of its
value.

Indexing out of the domain

From this we see that a dictionary trivially gives us a sparse array.

q)show sl :(5?10000000)!5? `3 / sparse list

4277716| jec

1697727| kfm

7977181| lkk

2912950| kfi

2740134| fgl

q)sl 1697725+ til 6 / values following 1697725

60 post atomic

```kfm ```

This works because if the argument to Index At is not a key, it
returns a null of the value’s datatype.

q)`a`b`c@5
`
q)10b@5

0b

This holds even when the list is empty.

q)(0#`)@5
`
q)type(0#`)@5 / result is an atom

-11h

q)(0#100) @5

0N

q)(0#" abc")@5 6 7

" "

q)(0#100)@(5 6 7;8;9 10 11)

0N 0N 0N

0N

0N 0N 0N

Above we observe that Index At is right atomic: its result corre-
sponds atom-for-atom to its right argument.

That is straightforward enough for a vector. But a dictionary value
can be any kind of list.

What is returned from a general list?

q)(`a;"b";3)@5
`
q)("a";`b;3)@5
" "

q)(0;`b;"c")@5
0N

The pattern is clear. We get a null of the same datatype as the first
item.



lists 61

Watch Out: There is an exception here to the right-atomic property
of Index At. The null value returned from an empty general list is –
an empty general list.

q)()~() @5

1b

q)()@(5 6 7;8;9 10 11)

(();();())

()

(();();())

Questions

1. Find at least three other expressions that return

`the `quick `brown `fox

2. WIBNI15 Dict accepted a value list one item longer than the key, 15 WIBNI: this handy term was
coined by the late John Scholes,
Dyalog APL implementor.

the extra item defining the ‘default’ to be returned instead of
null? Show how you might achieve the same effect, returning a
symbol xxx from sl instead of a null.

3. Construct a sparse matrix and show how you would index it.

4. Index At is right atomic. Exploit this to draw a crude A S C I I
‘heat map’ for the temperatures in matrix temp, shading ranges
(0–3; 4–6; 7–8).

temp :2({x,reverse x}flip ::)/{x+/:\:x}til 5





Parse trees

The q REPL

• reads the string you type in response to its prompt

• parses it into a parse tree

• evaluates the parse tree and displays the result

• prompts you again

All this is open to you in q. The keyword parse returns a parse tree
from a string. The keyword eval evaluates a parse tree.

So what’s a parse tree?

A parse tree is a list. It represents an evaluation ready to be done.

A parse tree with one or zero items represents a value. It has ‘noun
syntax’.

A noun, a thing. Something you can use as a function argument or We could say that, as a noun,
an object lacks agency. Scholar
Simone Weil wrote that The Iliad
tells of force turning people
into things: slaves or corpses.
Parentheses do as much in
q, cutting an object off from
application or indexing. (Unlike
Homer, q has Apply and Index to
return them to life.)

return as a result.

A value can be any q object. With it just as a noun, nothing hap-
pens.

q)parse "+" / Add - but add what to what?

'type

[0] parse "+"



64 post atomic

^

q))\

q)parse "(+)" / Add as a noun

+

q)

An expression for evaluation has a parse tree with multiple items.
The first is a function; the rest are its arguments.

q)parse "2+2"

+

2

2

Or the first is a list or dictionary, and the rest are indexes. It’s all
the same syntax.

q)parse"`a`b`c 2 0"

,`a`b`c
2 0

Above the symbol vector is indexed at 2 0, because juxtaposition
(prefix notation) is syntactic sugar for Apply At/Index At.

Specifying Index At doesn’t change the result, but the parser no-
tices.

q)parse"`a`b`c@2 0"

@

,`a`b`c
2 0

Above, Index At is to be evaluated against arguments `a`b`c and
2 0.

The items of a parse tree can themselves be parse trees.

q)parse "2*3 4+5"

*

2

(+;3 4;5)

And a q expression does not have to get very complicated before



parse trees 65

its parse tree becomes hard to read. Which is why we write q
expressions rather than parse trees.

But we can write parse trees. There is nothing special about the
lists returned by parse. We can write them too.

q)eval (*;2;(+;3 4;5))

16 18

Which opens up all kinds of interesting possibilities for control
flow.

Oh, k. . .

Some q keywords get parsed as the unary k operators they repre-
sent.

q)parse"count where 101b"

#:

(&:;101b)

We know # as Take and & as Lesser, but what are #: and &:?

They are the k unary operators we know in q as count and where.

Recall that q is a DSL embedded in k. These forms lurk just below Domain-specific language

the surface of q. They are called exposed infrastructure.

The k unary operators are covered by the q unary keywords to
make it easier to get started in q. They also mask the variadic
nature of operators that have both unary and binary forms, a
potential source of confusion for beginners.

You are no longer a beginner. Should you use the k unary operators
now? Are count and where just ‘trainer wheels’ you should discard
in order to write with the more arcane-looking unary operators?

You should not. The keywords in q make it more accessible to
beginners and it is good style to use them. The professional in you



66 post atomic

will also remember that however unlikely the k operators are to
ever change, the k language is undocumented and unsupported.

Notice it, learn from it – and leave it alone.



Dot

Everything begins with a dot.
— Vassily Kandinsky

Arthur Whitney sometimes says the shortest program in the
world is a dot – in the right language.

Let’s see how much work q gets out of a dot.

The dot glyph denotes both Apply and Index, which have the same
syntax.

You might resist the idea that applying a function and indexing a
list are the same, but in q they have the same syntax, so you can
write expressions which are agnostic about whether a function is
being applied or a list being indexed.

It is not so much an overload; more like two ways of thinking about
the same thing. Whitney attributes this identity

to his smarter older brother.
(Sherlock Holmes had one too.)Let’s review.

q)N10:til 10

q)A:N10 +/:\: N10 / addition table

q)M:N10 */:\: N10 / multiplication table

q)A[2;3] / 2+3

5

q)M[2;3] / 2*3

6



68 post atomic

For 2 3 (and any other items of N10) the following identities hold.

A[2;3] <=> .[A;2 3] <=> .[+;2 3]

M[2;3] <=> .[M;2 3] <=> .[*;2 3]

Put another way, (for the domain N10) .[A;] <=> .[+;] and
.[M;] <=> .[*;]; i.e. A Index is the same as Apply Add, and M

Index the same as Apply Multiply.

Apply lets you apply a function to a list of its arguments.

Index lets you retrieve part of a deeply nested data structure.

q)DNDS :... / deeply nested data structure

q)DNDS[i;j;k] ~ DNDS . (i;j;k)

1b

Above, the right arguments of Apply and Index are vectors.

The right arguments can be any list, but beyond vectors the identi-
ties above no longer hold.

q).[+;(2 3;7 4)] / 2 3+7 4

9 6

q).[A;(2 3;7 4)] / A[2 3;7 4]

9 6

10 7

We see above the limits of the identity. The arguments of Apply An atom conforms with an atom
or a list. Two lists conform if they
have the same length and the
pairs of corresponding items all
conform.

Add (.[+]) and Index A (.[A]) both have a count of 2, but only the
items of the former must conform.

Projections and selections

The right arguments of Apply Add and Index A need not have
length 2.

For Apply, .[+;y] for a 1-item y returns the projection +[y 0;]. For
Index, .[A;y] for a 1-item y returns the selection A[y;].



apply and index 69

q).[+;1#2] / 2+, a projection

+[2]

q).[A;1#2] / A[2;], a selection

"klmno"

Recall that where nothing follows the final semicolon in a list, the
last item is a general null.

q).[A;2 ,(::)] / A[2;]

"klmno"

q).[A;(::) ,2] / A[;2]

"chmrw"

Rectangular selections

The right arguments to Apply and Index need not be vectors.

For Apply, that might be obvious.

q)ssr . ("file name with spaces ";" ";"-")

"file -name -with -spaces"

For Index, not so much.

q)A . (2 3;7 4 5) / A[2 3;7 4 5]

9 6 7

10 7 8

q)A . (2 3;::) / A[2 3;]

2 3 4 5 6 7 8 9 10 11

3 4 5 6 7 8 9 10 11 12

q)A . enlist 2 3 / A[2 3;]

2 3 4 5 6 7 8 9 10 11

3 4 5 6 7 8 9 10 11 12

Vector arguments to Index get a cell of the left argument – or a
higher-rank result if the index vector has FIXME



70 post atomic

Scattered indexing

For a data structure d of rank N , an index vector of length N gets a
single cell of d.

This gives us scattered indexing: we can select a list of atoms from
anywhere in a data structure, however deeply nested.

Example: Make B a 10×10×10 int array of the first thousand natural
numbers. Write an expression that mentions B only once and re-
turns a vector of the four numbers at B[7;8;2], B[1;4;2], B[8;0;5]
and B[8;5;2].

q)B:10 10 10#1+ til 1000 / first 1000 natural numbers

q)B ./:(7 8 2;1 4 2;8 0 5;8 5 2) / scattered indexing

783 143 806 853

Apply and Index

In some ideal universe, Apply and Index would have the same
name.

They are denoted by the same symbol, the dot; they have the same
syntax; and, with dualities such as Multiply and M above, return the
same result. Same, same, same.

But English doesn’t provide a verb that captures the duality. It
would not help to speak of ‘applying’ a list or ‘indexing’ a function.
So we risk the confusion. We say Apply with functions and Index
with lists. But we write them the same, just the same.

Rank

Apply and Index are general, for functions and lists of any rank.

Rank? You might be more familiar with function rank as arity, the



apply and index 71

number of arguments a function takes. A unary function such as Qbists say argument rather than
parameter. We honour our origins
in mathematics.

count has rank 1; a binary function such as + has rank 2; and so on.

Lists have rank? They do. You might be more familiar with a dictio-
nary or list’s rank as its dimensionality, the number of dimensions
or indices you can use to index it. A vector has rank 1; a matrix has
rank 2; and so on.

We use rank for both arity and dimensionality because there are
things to say about both in q, and they are the same things. By
treating rank as a property of functions, dictionaries and lists, we
can say the same thing once. (Always a goal of coders.)

The concept of rank is inherited from q’s ancestor languages APL
and J. Sadly, it has nothing to do with

the q keyword rank, which is
about sorting. Unfortunate
potential confusion. Sorry about
that.

While we’re thinking about terminology, function includes opera-
tors, keywords and lambdas.

Apply and Apply At

Using Apply to apply a unary function f entails passing it a list of
the arguments to f. But a unary function f has only one argument,
so the list has only one item. The only way to make a 1-item list
from anything but an atom is to use enlist. (For an atom 1# works
fine.)

q)count . enlist `a`b`c
3

What a pain. And such a nice terse lan-
guage too. A colleague so much
hates writing enlist he hacks
enl:enlist into his development
environment.

For unary functions (and lists and dictionaries) q provides Apply
At and Index At @ as syntactic sugar – so you can elide enlist.

q)count @ `a`b`c
3

But that’s all @ is: syntactic sugar. Apply At isn’t doing anything



72 post atomic

that Apply doesn’t do.

For Apply At this identity holds:

f @ y <=> f . enlist y

And of course q’s prefix syntax lets you elide Apply At as well.

q)count `a`b`c
3

But Index At does do something that Index doesn’t do. The identity
above for function f does not hold for data structure d and Index
At.

Index At is right atomic. It iterates recursively through the right
argument and returns a result of the same structure.

q)b: (0011b;(101b;010b);000101b)

q)count @ b / Apply At

3

q)".#" @ b / Index At

"..##"

("#.#";".#.")

"...#.#"

With keyword count, Apply At passes the entire list b for the
function to evaluate.

With list ".#", Index At maps each atom of b to it.

With Index, in a multidimensional array of rank N you can think
of an index vector of length N defining a path to a point in the
N -space, much like a filepath in a hierarchical filesystem.

With Index At, the same index vector selects items only from the
list’s primary dimension.

Index At uses a vector to select top-level items. Index uses it to dive
deep.



apply and index 73

Trap

Apply and Apply At have an overload to protect evaluation. It
specifies what to do if evaluating a function signals an error.

The overload has rank 3. As in the binaries, the first argument is
applied to the second.

q)@[where ;101b]

0 2

q).[+;2 3]

5

In the ternary form, if evaluation signals an error, the third argu-
ment is evaluated. If the third argument is a function, it is applied
to the text of the signal.

q)@[where;`t`f`t]
'type

[0] @[where;`t`f`t]
^

q)@[where;`t`f`t;`oops] / return `oops
`oops
q)@[where;`t`f`t;'`oops] / signal oops

'oops

[0] @[where;`t`f`t;'`oops]

q).[+;`2`3]
'type

[0] .[+;`2`3]
^

q).[+;`2`3;`oops]
`oops
q).[+;`2`3;{'" Wrong ",x}]

'Wrong type

[0] .[+;`2`3;{'" Wrong ",x}]

^

Note the scope of the trap. In .[x;y;z] only the application of x to
y is protected. If y is the result of an expression, evaluation of the
expression is not protected by the trap.



74 post atomic

q).[+;1 2+`1;'`oops]
'type

[0] .[+;1 2+`1;'`oops]
^

Above, the evaluation of 1 2+`1 was unprotected, so the type error
was signalled.

Similarly, the trap does not protect evaluation of the third argu-
ment.

This is more consequential, because in a production environment
the third argument is likely to invoke error-logging code, which
therefore needs its own protections.

Applicable values

How to refer to the left arguments of Apply/At and Index/At?
They can be functions, lists or dictionaries, according to the insight
that “arrays are functions”.

Just as English has no verb that can be used as a metaphor for
applying a function or indexing a list, it has no noun corresponding
to functions, lists and dictionaries.

So we coin the neologism applicable value: a value that can be
applied. It is horrible, but we have found nothing better.

Amend and Amend At

There is still more work to be squeezed out of the dot.

Index is a functional way for getting the value of any atom in a data
structure d.

Dot has ternary (rank-3) and quaternary (rank-4) overloads for
setting the value. These overloads are the Amend operator.



apply and index 75

The Amend and Amend At operators allow you to change the
value of selected items of a list without first naming it. In other
words, instead of assigning the result of some expression to (say)
L then setting the values of L at selected indices, you can make the
amendments ‘in flight’.

That is instead of writing something like

L:f2 f1 something

L[1 3 7]&:100

f3 L

You can write f3@[;1 3 7;100&]f2 f1 something.

Or, if your list is already named L, you can write @[`L;1 3 7;100&]

and L gets amended ‘in place’ at positions 1, 3 and 7. And that
works whether your list is in memory or on disk.

Amend and Amend At are very powerful. Let’s look at how that
works.

In the ternary form of Amend, the third argument is a unary ap-
plicable value. In .[x;y;z] Amend applies z to the items of x at
indices y.

q)show A:til [5]+/:\: til 10

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10 11

3 4 5 6 7 8 9 10 11 12

4 5 6 7 8 9 10 11 12 13

q).[A;(2 3;4 7 1);7&] / projection

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 7 10 11

3 4 5 6 7 8 9 7 11 12

4 5 6 7 8 9 10 11 12 13

q).[A;(2 3;4 7 1);{x*x}] / lambda

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10



76 post atomic

2 9 4 5 36 7 8 81 10 11

3 16 5 6 49 8 9 100 11 12

4 5 6 7 8 9 10 11 12 13

q)show S:til [15]* til 15 / squares

0 1 4 9 16 25 36 49 64 81 100 121 144 169 196

q).[A;(2 3;4 7 1);S] / vector

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

2 9 4 5 36 7 8 81 10 11

3 16 5 6 49 8 9 100 11 12

4 5 6 7 8 9 10 11 12 13

q)show R:20?1000000 / vector of randoms

644841 853890 728999 102464 498865 951534 444777 52050 601329 796968 776408 9..

q).[A;(2 3;4 7 1);R]

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

2 102464 4 5 444777 7 8 796968 10 11

3 498865 5 6 52050 8 9 776408 11 12

4 5 6 7 8 9 10 11 12 13

In the quaternary form of Amend the third argument is a binary
applicable value, and in the fourth position, its right argument.

q).[A;(2 3;4 7 1);&;5]

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

2 3 4 5 5 7 8 5 10 11

3 4 5 6 5 8 9 5 11 12

4 5 6 7 8 9 10 11 12 13

The fourth argument must conform to the selection specified by the An atom, as above, always
conforms.second argument.

q).[A;(2 3;4 7 1);+;2 3#1000* til 6]

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

2 2003 4 5 6 7 8 1009 10 11

3 5004 5 6 3007 8 9 4010 11 12

4 5 6 7 8 9 10 11 12 13



apply and index 77

Note above how

q)2 3#1000* til 6

0 1000 2000

3000 4000 5000

was mapped to the items of A.

Lastly, when the Assign operator : is its third argument, the quater-
nary is known as Replace.

q).[A;(2 3;4 7 1);:;2 3#1000* til 6]

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

2 2000 4 5 0 7 8 1000 10 11

3 5000 5 6 3000 8 9 4000 11 12

4 5 6 7 8 9 10 11 12 13

q).[A;(2 3;4 7 1);:;999]

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

2 999 4 5 999 7 8 999 10 11

3 999 5 6 999 8 9 999 11 12

4 5 6 7 8 9 10 11 12 13

Amend At

Amend At, the ternary and quaternary overloads of @, follows the
previous pattern of being syntactic sugar for Amend.

The common use case is to amend a vector.

q)@[s;where s=" ";:;" -"]

"the -quick -brown -fox"

Type promotion

Watch Out: Neither Amend nor Amend At allow type changes.



78 post atomic

q).[A;(2 3;4 7 1); <;5]

'type

[0] .[A;(2 3;4 7 1); <;5]

^

q)@[til 10;3 5 7;0<]

'type

[0] @[til 10;3 5 7;0<]

^

Above, type errors are signalled as the operators refuse to replace
integers with booleans.

Questions

1. Write a lambda that returns the leading diagonal from a square
matrix.

2. What q objects can you not apply or index?

3. Write a lambda that returns the rank of a list or function.

4. Which of the following conform to L?

L:(1 2 3;(4 5;(6;7 8));9;(10 11;12))

0

"wxyz"

(`a`b`c;(`d`e;(`f;`g`h));`i;(`j`k;`l))
(1 2 3;(4 5;(6 7;8));9;(10 11;12))

("a";("b";(" cde";"f"))" ghi ";("j";" klmnop "))

`cow `sheep `cat `dog !5480 9473 6234 1492

([] animal:`cow `sheep `cat `dog;id:5480 9473 6234 1492)

5. For A:til[5]+/:\:til 10, revise the expression .[A;(2 3;4 7 1);<;5]

so that it replaces the six selected numbers with ones and zeroes.



Projection

A function of rank N expects (is entitled to) N arguments. If
you apply it to fewer, the result is a projection. A function of rank N

projected onto M arguments has a rank of M −N .

q)hyfn8:ssr[;" ";"-"]

q)hyfn8 "quick brown fox"

"quick -brown -fox"

Above, ssr is projected onto its second and third arguments, so the
projection hyfn8 has rank 1.

Projecting a function has the same syntax as applying it.

q)treble :3*

q)quarter :%[;4]

q)f:ssr["quick brown fox";" "]

q)g:ssr . ("quick brown fox";" ")

q)h:.[ssr;(" quick brown fox";" ")]

q)f~'(g;h) / scalar extension applies to function atoms

11b

q)(f;g;h)@'"-_/"

"quick -brown -fox"

"quick_brown_fox"

"quick/brown/fox"



80 post atomic

The Apply/Index dualism continues to hold here. Consider a
function f and a list L, both of rank N , and let x be a list of length
N .

Apply: f1:f . x is a projection of rank N −M.

Index: L1:L . x is a list of rank N −M.

Let y be a list of length M −N :

f1 . y evaluates f over the arguments in x and y

L1 . y returns the item from L at the indices in x and y

Projection is an efficient way to set constants in a function
definition. Any computation required is done once when the
projection is defined; the argument value is then bound to the
projection.

For example, suppose your algorithm requires a long list as a seed.

alg0: {[foo;bar]

seed :10+5* til 1000000;

..

}

Above, alg0 will evaluate 10+5*til 1000000 every time it is called.
Instead, project the function onto the vector.

alg1: {[seed;foo;bar]

..

}[10+5* til 1000000;;]

Above, the value of seed is computed once, when alg1 is defined.
This is better than reading a global variable – unless the value
involved occupies a lot of memory. (If the value in question is not
constant, pass it to the function as an argument in good functional-
programming style.)



projection 81

Questions

FIXME





Composition

The ideal style for a q expression is a sequence of unary functions,
each applied to the result of the one that follows it. For example,
where mathematical notation would write f gh(x) your q expres-
sion would be

f g h x

Ideally your reader begins reading on the right, considering the
evaluations successively to the left end of the line where the result
is assigned a name or returned to the console or a calling function. According to Whitney, Iverson

considered infix expressions a
sequence of unary projections,
e.g. 2*3+100 as (2*)(3+)100.

Where you need to iterate explicitly over the items of x, you have
some choices.

f'[g'[h'[x]]] / A

(f')(g')(h')x / B

f each g each h each x / C

{f g h x}each x / D

{f g h x}'[x] / E

Above, messy expressions (A–C) are equivalent: the derived func-
tions f', g', and h' are applied in turn. Expressions (D–E) instead
apply the functions f, g, and h to each item of x. The result of all
four is the same; the distinction might or might not have conse-
quences for performance.

There is an alternative to conjuring a lambda just to chain functions



84 post atomic

together. The Compose operator glues two functions together and
returns a composition; its rank is the rank of its second argument.

q)hyfn8:ssr[;" ";"-"]

q)foo:('[hyfn8;ssr]) / Compose hyfn8 and ssr

q)foo["quick brown fox";"f?x";"dog"]

"quick -brown -dog"

q)bar:.[ ';( hyfn8;ssr)] / Apply Compose to hyn8 and ssr

q)bar["quick brown fox";"f?x";"dog"]

"quick -brown -dog"

q)bar1:(') . (hyfn8;ssr) / Apply Compose to hyn8 and ssr

q)bar1["quick brown fox";"f?x";"dog"]

"quick -brown -dog"

We can use Compose Over to compose a list of functions. Here we write Compose as
a projection on none of its
arguments ’[;] to distinguish it
from other overloads of the quote
glyph.

q)fubar: ( '[;]) over (count;hyfn8;ssr)

q)fubar["quick brown fox";"f?x";"dog"]

15

But q syntax offers us something better.

q)fb:count hyfn8 ssr ::

q)fb["quick brown fox";"f?x";"dog"]

15

Simply suffixing a sequence of functions with the general null ::
suffices to compose them. This yields our sixth (and best) way to
iterate f, g, and h over x.

(f g h::) each x

Above, there is a tiny performance advantage in avoiding the
lambda, but the difference is unlikely to trouble you. The best argu-
ment for preferring compositions is that writing them encourages
you to express algorithms as sequences of unary transformations.

Code in this form is easier to parallelise or refactor as microser-
vices.



composition 85

Questions

1. Is {..}each x better q style than {..}'[x]?

2. Write a lambda ind that returns the indices of a list or dictio-
nary; that is

q)ind `a`b`c!1 2 3

`a`b`c
q)ind"abc"

0 1 2

Write the lambda as a single expression that is a sequence of
unaries, and do not use Cond.





Implicit iteration

One of the most common errors you are likely to make as a qbie is
to specify iteration unnecessarily.

Many of us have had our brains trained by other programming
languages to loop through data structures. It’s close to a reflex.

One potato, two potato.

And this is a problem? Not at all. Exactly what you should do in
C-style programming languages. You can probably write For-loops
in your sleep. You can probably write For-loops in your sleep. Zen master Zuigan called out to

himself each day.
— Master.
— Yes, sir.
— Become sober.
— Yes, sir.
— Do not be deceived by others.
— Yes, sir; yes, sir.

We need you to wake up.

Binary operators: atomic power

First off, most binary operators iterate implicitly. No doubt you are
familiar with examples such as

q)10 20 30 + 3 4 5

13 24 35

q)1000 + 3 4 5

1003 1004 1005

In the first, Add is applied between corresponding items of the two
vectors. Two same-length vectors conform, and all is well.



88 post atomic

In the second, atom 1000 is added to each item of the vector 3 4 5.

The latter is sometimes described as ‘scalar extension’: a scalar
(atom) gets paired with every item of a list. So the following are
identities:

3 4 5+1000

3 4 5+1000 1000 1000

That is true as far as it goes, but there is a good deal more going on
here.

In atomic iteration scalar extension is applied recursively until
atoms are reached.

q)L:(1 2 3;(4 5;(6;7 8));9;(10 11;12))

q)L+1000

1001 1002 1003

(1004 1005;(1006;1007 1008))

1009

(1010 1011;1012)

Since 1000 is an atom it conforms to any list, so winds up added to
every atom in L.

You could think of atomic iteration here as an atomiser, spraying
a cloud of atoms that settle onto every leaf of the L tree but the
oversimplification obscures how atomic iteration actually works.

q)L+1000 2000 3000 4000

1001 1002 1003

(2004 2005;(2006;2007 2008))

3009

(4010 4011;4012)

Above we see the four items of L paired with the four ints.

• 1000 adds to each of 1 2 3

• 2000 adds to each of 4 5; to 6; to each of 7 8

• 3000 adds to 9



implicit iteration 89

• 4000 adds to each of 10 11 and to 12

q)L*(10;(10b);100b;1000)

10 20 30

(4 5;(0;0 0))

9 0 0

(10000 11000;12000)

Above

• 10multiplies 1 2 3

• 1b multiplies 4 5; 0b multiplies 6 then 7 8

• 100b multiplies 9

• 1000multiplies each of 10 11 then 12

Notice that in atomic iteration if one argument is an atom or vector
the result mirrors the structure of the other argument.

But in the general case, as immediately above, you can count only
on the top-level structure being replicated. That is, the result will
have as many items as the argument list/s.

It will also conform to both.

Which operators and keywords iterate atomically?

• Arithmetic operators +, -, *, %

• Comparison operators =, <>, <, <=, >=, >

• Logical operators |, &, or and and

• Math keywords: abs, acos, asin, atan, ceiling, cos, div, exp,
floor, log, mod, neg, rand, reciprocal, signum, sin, sqrt, tan,
xexp, xlog

• null and Fill ^



90 post atomic

• Index At @

• Cast and Tok $, string

• upper, lower

Some of these will be less familiar than others.

Math keywords

A few examples will serve for all.

q)ceiling L*1.5

2 3 5

(6 8;(9;11 12))

14

(15 17;18)

q)acos neg (11b;(1b;(111b;11b);11b);1b)

3.141593 3.141593

(3.141593;(3.141593 3.141593 3.141593;3.141593 3.141593);3.141593 3.141593)

3.141593

null and Fill

null and Fill are both right-atomic.

q)null "string with spaces"

000000100001000000b

q)/Index At returns nulls for arguments outside the right domain

q)null "abcdefghi"@L

000b

(00b;(0b;00b))

1b

(11b;1b)

The most common use case for Fill is to replace every null value
with some other value, such as zero.



implicit iteration 91

q)0^1 2 3 0N 5 6 0N 8 9 / zero for null

1 2 3 0 5 6 0 8 9

q)"-"^" string with spaces"

"string -with -spaces"

But Fill iterates

q)"one slick brown dog"^"the quick fox"

"the quick brown fox"

Atomically.

q)N:(1 0N 3;(4 5;(6;0N 8));9;(10 0N;12))

q)1000^N

1 1000 3

(4 5;(6;1000 8))

9

(10 1000;12)

q)1000 2000 3000 4000^N

1 1000 3

(4 5;(6;2000 8))

9

(10 4000;12)

Index At

Index At is right-atomic: see the questions in Lists.

Cast

q)"hij"$101b

1h

0i

1

q)"bhij"$L

111b

(4 5h;(6h;7 8h))

9i



92 post atomic

(10 11;12)

Tok

Tok offers a variation on atomic iteration in which the recursion
stops at either atoms or strings.

Call this right string-atomic.

q)"BHIJ"$("123";"45";("6";"78");"999")

0b

45h

6 78i

999

Nothing like like

The like keyword has its own kind of implicit iteration. Its left
domain is either a string or a list of strings, according to which it
returns a boolean atom or vector.

q)"brown"like"br?wn"

1b

q)(" brown ";" brawn ";" frown ";" brain")like"br?wn"

1100b

We would call like left string-atomic if it recursed through deeper
structures – but it doesn’t.

q)string[(`brown;`brawn `frown;`brain)]like"br?wn"
'type

[0] string[(`brown;`brawn `frown;`brain)]like"br?wn"
^

Nothing iterates like like.



implicit iteration 93

‘upper‘ and ‘lower‘

Both upper and lower have atomic iteration.

q)s

("The";" quick")

((" Brown ";"Fox ");" JuMpS")

"over"

(("the";" LAZY ");" dog")

q)lower s

("the";" quick")

((" brown ";"fox ");" jumps")

"over"

(("the";" lazy ");" dog")

Aggregators

Aggregators iterate through the items of a list.

q)sum 3 5 8 13 /items of a vector

29

q)sum (3 5 8 13;2 4 6 8;1 3 5 7) /rows of a matrix

6 12 19 28

The sum keyword covers the derived function +/ Add Over, which is
the map-reduce pattern.

A matrix is a list of same-length vectors. In applying Add between
list items (rows) the rules of conformity hold, so sum can be applied
to a nested list of conforming items.

q)sum (3 5 8 13;3;1 3 5 7)

7 11 16 23

q)sum (3 4;(5;6 7);(8 9;10))

16 17

20 21

The last example proceeds by adding 3 4 to (5;6 7) to get (8;10 11)then



94 post atomic

adds (8 9;10) to get (16 17;20 21).

From a rectangular array of rank N an aggregator returns a rectan-
gular array of rank N − 1. Put another way, it reduces (removes) the
first dimension of its argument.

Questions

With a little care you can write utility functions that also iterate
implicitly. Write a binary function rng that returns the inclusive
range between its integer arguments, e.g.

q)rng [3;7]

3 4 5 6 7

Now get rng to work with conformable arguments; e.g.

q)rng [3;5 8]

3 4 5

3 4 5 6 7 8

q)rng[3 4;5 8]

3 4 5

4 5 6 7 8

And so on.



Iterator syntax

Implicit iteration is almost always the best iteration you can get in q.
For everything else, there are iterators.

Iterators are. . . amazing. To use them fluently, you need a firm Iterators are known in k, and
were previously known in q, as
adverbs.

grip on their syntax.

Iterators are unary operators with postfix syntax. That is to say, an
iterator has a single argument, which can be written on its left. It
returns (or derives) a function, the derived function.

A simple example:

q)(" quick ";" brown ";"fox")?'"ioo"

2 2 1

Above, the derived function ?' finds "i" in "quick", "o" in "brown",
and so on.

The Each iterator takes Find as its argument, to derive the function
?'. Find Each is a thing. It has type 106 and you can assign it a
name.

q)fe: ?' / Find Each

q)type(fe)

106h

q)fe[(" quick ";" brown ";"fox ");" ioo"]

2 2 1



96 post atomic

Postfix syntax is conventional and also good q style. However, the
syntax you already know still applies. The best way to write Find Each

is ?’, but if you are applying
an iterator to a function that
is the result of evaluating an
expression, Apply At might be
what you need.

q)fe ~ ('[?]) / bracket syntax

1b

q)fe ~ @[';?] / Apply At operator

1b

Iterators apply to overloads

As the q Reference has it, glyphs such as ? are overloaded. The
? glyph denotes several operators, such as Find, Roll, Select and
Vector Conditional. So which of them does ?' denote?

All of them.

The derived function is as variadic as the argument function.

Many binary operators are secretly variadic

In k many binary operators, such as + and &, have unary overloads,
which in q are wrapped as keywords. For example, the unary forms
of + and & are, respectively, flip and where.

These unary overloads are exposed infrastructure from k, undocu-
mented and unsupported. But there all the same.

As a consequence, a derived function such as #', which looks like it
should be unambiguously binary, is actually variadic. It has both
binary and unary syntax.

And count', which looks unambiguously unary, has variadic syntax
too.



iterator syntax 97

All derived functions have infix syntax

That’s right, all of them. Regardless of their actual ranks.

Some of them have ranks to match.

q)+/[1000;2 3 4] / +/ as binary

1009

q)+/[2 3 4] / +/ as unary

9

Some don’t, e.g. count' and #'.

So how is q to know whether, say, +/ is to be parsed as a binary or a
unary?

You tell it.

You have three ways to do that.

• Apply it with bracket syntax, as above, which is unambiguous: To project a binary derived
function, be sure to include the
semicolon. That is, +/[1000;] is a
projection, but +/[2 3 4] is not.

e.g. +/[x;y] or +/[x].

• Apply it with infix syntax, which is unambiguous, e.g. x+/y.

• Parenthesise it and apply it with prefix syntax.

The third is almost a syntactic trick. Parenthesising the derived
function, e.g. (+/) gives it noun syntax. Now, in the expression
it appears in, it’s a thing. It doesn’t have agency. It doesn’t act on
anything else. Unless. . . you apply it.

q)(+/) . (1000;2 3 4) / Apply (binary)

1009

q)(+/) @ 2 3 4 / Apply At (unary)

9

As usual, good q style prefers infix and prefix syntax.

q)1000+/2 3 4



98 post atomic

1009

q)(+/) 2 3 4

9

Assigning a derived function removes its infix syntax

q)tot: +/

q)tot 2 3 4

9

q)tot [100;2 3 4]

109

You can evaluate 100+/2 3 4 but not 100 tot 2 3 4, because tot

inherits the variadic property from +/ but not inherit its infix
syntax.

However, because tot does not have infix syntax, you can apply
it as a unary without ambiguity. That is, you can write tot 2 3 4;
you do not have to use parentheses, Apply At, or bracket syntax.

Now you understand why derived functions are parenthesised for
unary application.

You can write a lot of q without mastering this, because q provides
keywords for the most commonly used derived functions, and also
for the iterators themselves.

Keywords for unary application of derived functions

op op/ op\

---------------

+ sum sums

* prd prds

| max maxs

any

& min mins

all



iterator syntax 99

These are not learning aids to be abandoned once you have mas-
tered iterator syntax.

Good q style prefers the keywords.

Keywords for iterators

Similarly, q has keywords for the iterators themselves.

' each

/ over

\ scan

': prior

These keywords are not themselves iterators, but binary functions
with infix syntax.

q)type(') / iterator

103h

q)type(each) / function

100h

The each keyword takes as its left argument a unary function:
x each y is equivalent to x'[y] or (x')y.

As functions, these keywords do not return derived functions. But
you can project them and apply the projection much as you would
apply a derived function.

q)ced:count ' / derived function

q)cep:count each / projection: each[count;]

q)ced ("quick ";" brown")

5 5

q)cep ("quick ";" brown")

5 5

Again, good q style prefers count each x to count'[x] or (count')x.
But this does have its limits.

q)M:((" quick ";" brown ");(" fox";" jumps "))



100 post atomic

q)count ''[M]

5 5

3 5

Above, the derived function count' is the argument of the second
Each, deriving the function count''. The two iterators amount to
one loop nested inside another.

This is not made clearer by use of the keyword.

q)(count each)each M

5 5

3 5

q)each[count each]M

5 5

3 5

While you can and should use the keyword for simple expressions,
to write more complex expressions, master iterator syntax.

Do the same for all the iterator keywords.

Applicable values

The argument of an iterator is an applicable value.

That includes functions, but also lists, dictionaries, and communi-
cation handles.

q)show fsm : -10?10 /finite -state machine

4 3 9 1 5 6 8 0 7 2

q)fsm \[7]

7 0 4 5 6 8

q)show rps:`rock `paper `scissors!`scissors `rock `paper
rock | scissors

paper | rock

scissors| paper

q)1 rps\`rock `paper
rock paper

scissors rock



iterator syntax 101

q)(-1')(" quick ";" brown ";"fox");

quick

brown

fox





Map iterators

The map iterators are all variations on Each.

The Each iterator is the Map in the Map-Reduce paradigm.

It derives a function that iterates across the items of its argument/s.

q)/unary

q)ce:count '

q)count("quick ";" brown ";"fox")

3

q)ce("quick ";" brown ";"fox")

5 5 3

q)/ binary

q)(" quick ";" brown ";"fox")? '("uc";"o";"o")

1 3

2

1

q)/ ternary

q)ssr '[(" quick ";" brown ";"fox ");("qu";"own";"f?x");("sl";"ave";"dog")]

"slick"

"brave"

"dog"

The derived function count' has rank 1. We would like to apply
count Each with prefix syntax (count' x) but recall that all derived
functions have infix syntax regardless of their ranks, so we can’t.



104 post atomic

Avoiding bracket syntax and the Apply At operator leaves us the
syntactic trick of applying the parenthesised derived function with
prefix syntax: (count')x, to which q adds (and prefers as good
style) the binary keyword each. This has infix syntax, so we can
write count each x.

Use of the each keyword has led some authors to call the Each
iterator each-both, but this term obscures the fact that the iterator is
agnostic about rank, so the term is deprecated.

Scalar extension means that in x f'y an atom left argument is used
as the left argument for

q)"*",'(" quick ";" brown ";"fox")

"*quick"

"*brown"

"*fox"

We often want a similar effect with an argument that is not an
atom.

q)("* ";"* ";"* "),'("quick ";" brown ";"fox")

"* quick"

"* brown"

"* fox"

But we are all about removing tedious repetitions. Above, we could
project Join onto "* " to get a unary.

q)("* ",)each("quick ";" brown ";"fox")

"* quick"

"* brown"

"* fox"

Or – a handy piece of syntactic sugar – q provides the Each Left
and Each Right iterators.

q)"* ",/:(" quick ";" brown ";"fox") / Each Right

"* quick"

"* brown"

"* fox"

q)"* ",\:" quick brown fox" / Each Left



map iterators 105

"*quick brown fox"

" quick brown fox"

" quick brown fox"

Another handy lump of syntactic sugar is Each Prior ':, which With a unary, ’: is Each Parallel,
which partitions the computation
and delegates it to worker tasks.

pairs each item in a list with its predecessor.

q),':["abcde"]

"a "

"ba"

"cb"

"dc"

"ed"

q){x,'prev x}[" abcde"]

"a "

"ba"

"cb"

"dc"

"ed"

Much as with each, the prior keyword provides infix syntax and is
to be preferred.

q)(,) prior "abcde"

"a "

"ba"

"cb"

"dc"

"ed"

Questions

• Why do count' and count each have different types?

• Will x f'y evaluate if both arguments are atoms?





Accumulators

The q Reference shows two accumulators, Over and Scan, with
a variety of forms according to the rank of the argument, and the
rank with which the derived function is applied.

The reality is much simpler.

To start with, we can consider Over as syntactic sugar for Scan.

f/[x] <==> last f\[x]

‘Syntactic sugar’ is not exactly right, because Over iterations dis-
card interim results that Scan must keep and return, making Scan
more hungry for memory. But for our purposes we can examine
Scan and remember that Over performs the same series of computa-
tions, returning only the last result of the series.

Like the other iterators, Scan takes a single argument postfix, i.e.
on its left, and derives a new function. Call the argument f and the
derived function f\.

The derived function is applied to its first argument and the
result becomes the first argument of the next iteration.

And so on until the termination condition is met; f\ then returns
the original argument followed by the results from all the itera-
tions; f/ returns only the last result.



108 post atomic

If f is

binary or higher rank, f\ iterates through the right argument/s Using binary infix operators
as a model, the first argument
of a binary is also known as
the left argument; for a binary
f the second argument is the
right argument; for functions
of higher rank the second and
subsequent arguments are the
right arguments. This holds
whether or not the function has
infix syntax.

then terminates

unary the termination condition is either specified (Do, While) or
that the results have converged (Converge).

Rank 2

If f has rank 2, it iterates through the right argument. Recall that derived functions
have infix syntax.

For example:

q)"* ",\"abc"

"* a"

"* ab"

"* abc"

Iteration terminates after traversing the right argument.

Rank 3+

If f has rank 3 or higher, the right arguments must conform. The infix syntax of the derived
function is irrelevant: it must be
applied with brackets or with
Apply.

q){x,y,z}\["* ";"abc";"X"] / "abc" and "X" conform

"* aX"

"* aXbX"

"* aXbXcX"

Rank 1

For a unary f the termination condition must be specified – or left
to converge.

Recall that derived functions are variadic.



accumulators 109

To specify the termination condition, apply f\ as a binary, with the
termination condition as the left argument.

To leave the termination condition unspecified, apply f\ as a unary.

Do and While

Specify either a number of repetitions, or a test that must be
passed.

q)6{(+) prior x,0}\1 / Do (integer)

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

The expression 1 f\ is a handy point-free alternative to {(x;f x)}. Notice the use here of a composi-
tion as the While test.

q)(7>count ::){(+) prior x,0}\1 / While (test)

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Converge

The (unspecified) termination condition is that the result matches
the result from the prior iteration – or the original argument.

q){x*x}\[.01]

0.01 0.0001 1e-08 1e-16 1e-32 1e-64 1e-128 1e-256 0

q)show fsm : -20?20 / finite -state machine

12 9 0 4 14 3 16 18 7 5 1 17 8 10 13 11 6 2 19 15



110 post atomic

q)fsm \[0]

0 12 8 7 18 19 15 11 17 2

q)neg \[1]

1 -1

Questions

1. Write a While expression in which the test is a list.

2. For which of the above forms can you use the scan and over

lambdas?

3. Function es takes an argument pair:

• a list of primes

• a bitmask (boolean vector)

and returns a pair: the primes with the next prime appended
and the bitmask with that prime and its multiples set false.

Write es and use it to implement Eratosthenes’ Sieve to find the
primes up to 10000.



Part III

Answers





Answers to Also

When should a space follow a semicolon?

Trick question.

Because Also is always and only a separator it need never be fol-
lowed by a space.

There are occasions to do so, but this is a question of style, not
syntax.

In English typography, a semicolon is conventionally followed by a
space. Your brain is already trained to recognise ; as a separator.
So it makes sense to exploit this and suffix a space.

$[test this; then do this; else do that]

But q is a lot more terse than English. Consistently suffixed spaces
quickly get distracting, maybe annoying.

M[i; j; k]

$[x>0; x+3; x*2]

A better rule is to omit the spaces except where they improve clarity.
That‘s an aesthetic judgement. Don’t be afraid to make it.

M[i;j;k]

$[x>0;x+3;x*2]



114 post atomic

When should a semicolon follow an expression?

Not a trick question.

It must always follow an expression in an expression list or lambda
unless it is the last expression.

A lambda returns as its result the result of evaluating the last
expression in its expression list. (See the chapter on lambdas for
more detail.)

What is the last expression in an expression list?

The last expression is the one that follows the final semicolon.

An empty expression evaluates to the generic null::.

There is always a last expression; a lambda always has a result.

A ‘lambda with no result’ is just a loose and popular way of saying
a lambda that returns the generic null.

q)q:{show x*6;}7

42

q)~[q;::]

1b

Is Also actually a binary operator that returns a list?

Cute idea. And some authors have written as much.

But it has erroneous implications, so let’s clear it up.

Now the following certainly evaluate to the same:

2 3

2,3

(2,3)



answers to also 115

(2;3)

But if ; were a binary operator returning a list then

q)2 3 ~ 2;3

3

would return 1b not 3. The parser provides further clues.

q)parse "2,3"

,

2

3

q)parse "2;3"

";"

2

3

q)parse "(2;3)"

enlist

2

3

At first glance, the parse trees for 2,3 and 2;3 resemble each other,
but a closer look shows that in the second case the first item is a
char, not a function. The parser treats semicolon as a special case.
(Try parsing "2+3"or "2*3"for comparison.)

Why does the parse tree for (2;3) have enlist as its first item?

Good question.

And it brings us to the next chapter.





Answers to Lists

Browning the fox

q)``quick ``fox^`the ``brown ` / Fill

`the `quick `brown `fox
q){`the ,x,`brown ,y}[`quick;`fox] / Join

`the `quick `brown `fox
q)@/[`the ``brown `;1 3;:;]`quick `fox / Amend At

`the `quick `brown `fox

Dictionary with a specified default

The Fill operator replaces nulls in its right argument with items
from its left argument.

q)sl 2912950 + 0 1

`kfi `

q)sld:`xxx^ sl :: / sl with xxx default

q)sld 2912950 + 0 1

`kfi `xxx

Above, sld is defined as a composition. It could as easily have
been defined as {`xxx^sl x}. But it is a good habit to compose the
unaries instead, even if the overhead of the lambda is tiny.



118 post atomic

Construct a sparse matrix

A matrix has rank 2; that is to say, two indexes.

We could emulate the syntax of a matrix by adapting the sparse
array sa, making its value a list of sparse arrays.

q)show sm :(4?10000000)!(4 3#12?1000000)! '4 3#12?`3
9099330| 444777 52050 601329!`bgh `ifn `foh
6471333| 796968 776408 974541!`kdj `eeg `nce
6680492| 584094 946833 766842!`jog `cih `hkp
2200212| 981627 987244 323212!`aea `blm `ooe

q)sm [6471333;776408]

`eeg

q)sm [6471333;776408+0 1] / nulls for other indices

`eeg `

But the emulation breaks down if we omit an index.

q)sm [;776408+0 1]

9099330|

6471333| eeg

6680492|

2200212|

What were we expecting there? A ten-million item vector?

Let’s relax our expectation of an exact emulation of matrix syntax.
How many rows in our sparse matrix will have more than one
column filled? A better scheme makes the key a list of index pairs.

q)show sm:cut [2;8?10000000]!4? `3
5450872 9275078| ojp

2328058 5594916| ckn

3782668 5541596| ohe

4190253 5791571| nem

q)sm@2328058 5594916

`ckn



answers to lists 119

q)sm 2328058 5594916

`ckn

q)sm (4190253 5791571;0 0;2328058 5594916)

`nem ``ckn

Draw an ASCII heat map

Here are the values we want to map. The composition
{x,reverse x} flip ::
is applied twice to produce four
rotations (0°, 90°, 180°, 270°) of
the 5×5 addition table.

q)show temp :2({x,reverse x}flip ::)/ {x+/:\:x}til 5

0 1 2 3 4 4 3 2 1 0

1 2 3 4 5 5 4 3 2 1

2 3 4 5 6 6 5 4 3 2

3 4 5 6 7 7 6 5 4 3

4 5 6 7 8 8 7 6 5 4

4 5 6 7 8 8 7 6 5 4

3 4 5 6 7 7 6 5 4 3

2 3 4 5 6 6 5 4 3 2

1 2 3 4 5 5 4 3 2 1

0 1 2 3 4 4 3 2 1 0

The tops of the first two ranges are 3 and 6. Count how many
range-tops each item exceeds.

q)sum 3 6<\:temp

0 0 0 0 1 1 0 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 1 1 1 1 1 1 0 0

0 1 1 1 2 2 1 1 1 0

1 1 1 2 2 2 2 1 1 1

1 1 1 2 2 2 2 1 1 1

0 1 1 1 2 2 1 1 1 0

0 0 1 1 1 1 1 1 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 0 1 1 0 0 0 0

That’s almost our heat map right there. We just map to characters.

q)"./#" sum 3 6<\:temp

"....//...."



120 post atomic

"...////..."

"..//////.."

".///##///."

"///####///"

"///####///"

".///##///."

"..//////.."

"...////..."

"....//...."



Parse trees

FIXME





Answers to Dot

Leading diagonal from a square matrix

q)show A:5 5#.Q.a /square char matrix

"abcde"

"fghij"

"klmno"

"pqrst"

"uvwxy"

q)A . 0 0 /A[0;0]

"a"

q)til count A /row indices

0 1 2 3 4

q)2#'til count A /row:col index pairs

0 0

1 1

2 2

3 3

4 4

q)A ./:2#' til 5 /leading diagonal

"agmsy"

q)ld:{x ./:2# 'til count x} /leading diagonal



124 post atomic

What q objects can you not apply or index?

This question reveals that every object in q can be applied or in-
dexed except atoms.

q)3 . 0

'type

[0] 3 . 0

^

And even here there are exceptions: handles.

The integers 0, 1 and 2 and their negatives are, respectively, han-
dles for the console, stdout and stderr.

q)-1 . enlist "quick brown fox";

quick brown fox

The same applies to integers assigned as handles to files or sockets.

So the answer is: atoms that are not assigned as communication
handles.

A lambda that returns the rank of a list or function

Start with list rank. This is a slightly slippery concept.

The Iversonian ancestors of q, APL and J, know only rectangular
arrays. A rank-2 APL array M is a matrix; its rows are all the same
length; in M[i;j], j has the same range for all values of i.

In contrast, q inherits from Lisp. A matrix is a list of vectors of uni-
form type and length; if the rows do not happen to have uniform
type and length, it is not a matrix – but it is still a list. Modern APLs support such lists

but distinguish them more easily
from matrices.So how shall we measure list rank in q? Consider a matrix M:

q)show M:4 5#20?100

12 10 1 90 73



answers to dot 125

90 43 90 84 63

93 54 38 97 88

58 68 45 2 39

The list’s type doesn’t distinguish it froma general list.

q)type M

0h

q)first\[M] / dig for atoms

(12 10 1 90 73;90 43 90 84 63;93 54 38 97 88;58 68 45 2 39)

12 10 1 90 73

12

q)-1_ count each first scan M / shape

4 5

q)shape:-1_ count each first scan::

q)rnk: count shape::

That was all right for actual matrix M. Now consider dictionary svg:

q)show svg:`line `triangle `square !((0 0;4 5);(1 3;4 7;3 2);(1 1;1 5;5 5;5 1))

line | (0 0;4 5)

triangle| (1 3;4 7;3 2)

square | (1 1;1 5;5 5;5 1)

q)svg [;0]

line | 0 0

triangle| 1 3

square | 1 1

q)svg [;0;1]

line | 0

triangle| 3

square | 1

Clearly svg can have three indices.

q)svg[`triangle ;2;0]
3

q)svg . `triangle ,2 0

3



126 post atomic

But it is not rectangular, and if we apply shape – which assumes it
is and examines only the first value – the result suggests the range
of the second index is only (0,1).

q)shape svg

3 2 2

If our criterion for rectangularity in M is that in M[i;j], j has the
same range for all values of i, then svg has only rank 1. If we
needed exact rectangularity as the criterion for rank, we could
write a (much slower) version of rnk that would explore that. For
this exercise, we shall allow that svg has rank 3.

A quick check confirms its results for a vector and an atom.

q)rnk 1 2 3

1

q)rnk 3

0

Yes, an atom has rank 0 – no dimensions at all. That seems intu-
itive, and corresponds to our inability to index it.

Rank of a lambda is immediately apparent from inspection. If the
lambda has a signature (list of arguments) its rank is their count.

q){1+ sum ";"=(x?"]")#x} string ({[a;b;c;d]a+b*c<d})

4

Otherwise we look for x, y and z.

q){1+ last where (1#'"xyz")in" "vs@[x;where not x in .Q.a;:;" "]} string ({x+y*z})

3

Putting it together:

rnkl:{ /lambda rank

$[first[x]="["; 1+sum ";"=(x?"]")#x;

1+last where (1#'"xyz")in" "vs@[;where not x in .Q.a;:;" "] x]

} trim 1_-1_ string ::



answers to dot 127

It remains only to examine the type of the argument:

rnkg:{ /general rank

t: type x;

$[t<0; 0;

t in 0 98 99; rnk x;

t<77: 1;

t=100; rnkl x;

t=101; 1;

t=102; 2

t=103; 1;

0N ] }

Which we could rewrite as a composition

rnkg :({0}; rnk ;{1}; rnk;rnkl ;{1};{2};{1};{0N})

sum -1 0 1 78 98 100 101 102 103> type ::

Conforming lists

All of them.

In turn:

• 0 is an atom. An atom conforms to any list.

• L has four items. Each of the four atoms of "wxyz" conforms to
any list.

• The nested symbol list exactly mirrors the structure of L: sublist
to sublist; atom to atom.

• The nested int list is a slight variation from L. Where L has
(6;7 8), it has (6 7;8). But that still conforms, because atom 6

conforms to list 6 7, and atom 8 conforms to list 7 8.

• Although the strings in the nested char list are of different
lengths than the int sublists of L, in each case a char atom pairs
to an int sublist; or a string to an int atom.

• The dictionary has four entries; the value of each is an atom.



128 post atomic

• The table has four rows; both columns are vectors.

Promoting type

Since Amend will not promote the type from boolean to integer
implicitly, we must do it explicitly.

q).[A;(2 3;4 7 1);{"j"$x<y};5] / lambda

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

2 1 4 5 0 7 8 0 10 11

3 1 5 6 0 8 9 0 11 12

4 5 6 7 8 9 10 11 12 13

q).[A;(2 3;4 7 1);( '["j"$; <]);5] / composition

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

2 1 4 5 0 7 8 0 10 11

3 1 5 6 0 8 9 0 11 12

4 5 6 7 8 9 10 11 12 13

Since the fourth argument is an atom, the ternary form (with a
unary as the third argument) will do just as well.

q).[A;(2 3;4 7 1);{"j"$x <5}] / lambda

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

2 1 4 5 0 7 8 0 10 11

3 1 5 6 0 8 9 0 11 12

4 5 6 7 8 9 10 11 12 13

q).[A;(2 3;4 7 1);( '["j"$;5>])] / composition

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

2 1 4 5 0 7 8 0 10 11

3 1 5 6 0 8 9 0 11 12

4 5 6 7 8 9 10 11 12 13



Answers to Projection

FIXME





Answers to Composition

Better q style

Using the keyword each is better q style than bracket syntax be-
cause it facilitates the ideal style of a sequence of unary transfor-
mations: instead of x on the right one could as easily have a long
expression to be evaluated.

In this case the advantage is marginal. If the right argument is
simply x then each x is only slightly clearer than '[x]. Consistency
is probably decisive here. Since each is generally better style for
unaries, best to use it consistently and let your reader reserve
cognitive power for your algorithm.

Indices of a list or dictionary

This question relates to the idea that a list is a dictionary with an
implicit key.

Clearly the first issue is type.

q)type d: `a`b`c!1 2 3

99h

For a dictionary we apply key; for a list we apply til count.



132 post atomic

q)(til count ::;key) 99h= type d

!:

That’s key in its k form as the unary overload of !.

Just need to apply it to d.

q)@[;d] (til count ::;key) 99h= type d

`a`b`c

And there’s our lambda.

q)ind: {@[;x](til count ::;key)99h=type x}

q)ind d

`a`b`c
q)ind "abc"

0 1 2



Answers to Implicit iteration

The basics of rng are simple enough. Here are two ways to express
it.

q){x _ til y+1}[3;7] / (I) _ til

3 4 5 6 7

q){x+til y-x -1}[3;7] / (II) + til

3 4 5 6 7

The difference in their performance characteristics will show up
on long vectors. If x and y are both large then (I) will use a lot of
memory to generate a short vector. If x is small and y is large then
(II) will perform a lot of additions instead of dropping a few items.
We can imagine using Cond to select between (I) and (II) on this
basis.

Here we’ll set those considerations aside and focus on getting rng

to iterate implicitly. For that we’ll use (II), because Add iterates
implicitly, and Drop does not.

q)rng0:{x+til y-x-1}

Iterating over vectors

We can see that

• x+ is all right for vector x



134 post atomic

• and y-x-1 is all right if x and y conform

• but til takes only an atom argument

But an each might work here.

q)rng1:{x+til each y-x-1}

q)rng1 [3;7]

3 4 5 6 7

q)rng1[3 4;7]

3 4 5 6 7

4 5 6 7

q)rng1 [3;7 5]

3 4 5 6 7

3 4 5

q)rng1[3 4;7 5]

3 4 5 6 7

4 5

This looks like what we want. But wait. Have we broken our first
test case?

rng1[3 4;7] and the others returned 2-item lists. Did rng1[3;7]

return a 1-item list, i.e. enlist 3 4 5 6 7?

q)count rng1 [3;7]

5

It did not. It returned a vector. How did that work so nicely?

The answer is that Each over an atom is a no-op.

q)til '[3] ~ til[3]

1b

Effectively the each in til' is free: it’s there if it’s needed. If you find the switch above be-
tween each and Each confusing,
the following chapter on map
iterators should clear it up.

The last example suggests we should think about the domains of
rng and the edge cases.

q)rng1 [3;3]

,3

q)rng1 [3;2]



answers to implicit iteration 135

`long$()
q)rng1 [3;1]

'domain

[1] rng1:{x+til each y-x-1}

^

The first result looks intuitively right. The second looks plausible:
the range from 3 to 2 is empty.

We could signal a domain error if x>y. Or we could return an empty
list.

The latter is better q style. The language is designed to prefer null
results to signalling errors.

q)rng2:{x+til each 0|y-x-1}

q)rng2[3 4 ;7 8]

3 4 5 6 7

4 5 6 7 8

q)rng2[3 4 ;7]

3 4 5 6 7

4 5 6 7

q)rng2[3 ;7 8]

3 4 5 6 7

3 4 5 6 7 8

q)rng2 [3;3]

,3

q)rng2 [3;1]

`long$()

Recursive iteration

We have an algorithm now that works for atoms or vectors in both
arguments. But we have seen the power of atomic iteration. Can we
do anything similar?

Could we write rng such that

q)to[(3 4;5);7 8]

(3 4 5 6 7;4 5 6 7)



136 post atomic

5 6 7 8

We can do this by recursing until we find vectors or atoms, check-
ing conformity every time we do so.

First, let’s collect our test cases so far.

q)show c:([]x:(3;3;3;3 4;3;3 4);y:(7;3; -5;7;7 8;7 8))

x y

-------

3 7

3 3

3 -5

3 4 7

3 7 8

3 4 7 8

q)update r:x rng2 'y from `c
`c
q)c / test cases

x y r

-------------------------------

3 7 3 4 5 6 7

3 3 ,3

3 -5 `long$()
3 4 7 (3 4 5 6 7;4 5 6 7)

3 7 8 (3 4 5 6 7;3 4 5 6 7 8)

3 4 7 8 (3 4 5 6 7;4 5 6 7 8)

Our next iteration towards rng will first see if both arguments are
either atom or vector. If they are, it returns the result of rng2. If not,
at least one argument is a general list (type 0) through which we
iterate.

rng3: {$[all type each(x;y); x+til each 0|y-x-1; x .z.s'y]}

Above,

• all type each will catch any combination of atom and vector
arguments;

• .z.s refers to the function currently under evaluation; i.e. the
way a function can refer to itself whether or not it was assigned a



answers to implicit iteration 137

name.

Add one more test and run them all.

q)c,:`x`y`r!((3 4;5);7 8;((3 4 5 6 7;4 5 6 7);5 6 7 8)) / mixed

q)c[`r] ~ c[`x] rng3 ' c`y
1b

So rng3 works.

We are still Eaching through the cases, though. Is that necessary?

Not at all:

q)c[`r] ~ rng3[c`x;c`y]
1b

Or, for that matter,

q)c[`r] ~ rng3 . c`x`y
1b

Beyond Cond

But let’s use array thinking here instead of if/then/else.

Using Cond leans towards one potato, two potato, because its first
argument is an atom. Cond answers one question at a time. Vector
thinking prefers lists of answers.

Suppose, unlike the toy utility we have been considering, our
normal use case was a long list of argument pairs, and that the
test all type each is comparably expensive to the algorithm itself
(as it is here), and that q’s vector sympathies make the tests much
cheaper in bulk.

Let’s test in bulk.

Start small – all type each returns a flag: whether we can apply
the core function without iterating. It’s an atom, but we have an



138 post atomic

alternative to Cond.

rng4 :{.[;(x;y)] (.z.s';{x+til each 0|y-x-1}) @all type each(x;y)}

Above we use the flag to pick one of two functions, which passes to
.[;(x;y)] to be applied to the arguments. This has more potential.
Where Cond works only on a single flag, indexing works with
vectors.

Vectors! Vector Conditional is also an alternative to Cond.

rng5 :{.[;(x;y)] ?[;{x+til each 0|y-x -1};.z.s'] all type each(x;y)}

Notice with Vector Conditional above how

• all the arguments are atoms

• the second and third arguments are functions

• the first argument is also an atom, but if it were a vector the
result would also be a vector

Notice also how it is projected on its constant second and third
arguments so that the evaluated first argument appears on the
right. The same is true for Apply. Good q style finds clarity in a
sequence of unaries applied with prefix syntax.

Go large

We’re warmed up. Now let’s consider a list of argument pairs.

We can classify the arguments as atom, mixed, or vector by the
signum of their types: respectively -1 0 1.

q)(type '')flip c`x`y
-7 -7

-7 -7

-7 -7

7 -7



answers to implicit iteration 139

-7 7

7 7

0 7

q)signum(type '')flip c`x`y
-1 -1

-1 -1

-1 -1

1 -1

-1 1

1 1

0 1 If you have learned to iterate a
unary such as type using the each
keyword, you might wonder why
above you see type”. More on
this in the next chapter.

And we can envisage a truth table: whether we need to recurse
through Each.

| -1 0 1

---+---------

-1 | 0 1 0

0 | 1 1 1

1 | 0 1 0

We can use the signum of the types to index into the truth table,
telling us for each argument pair, whether to recurse through Each.

q)(3 3#010111b) ./: 1+ signum(type '')flip c`x`y
0000001b

Above, we use the expression for scattered indexing that we en-
countered in the chapter on Dot.

This gives us the functions we need to apply to each argument pair.

q){({x+til each 0|y-x -1}.;.z.s)(3 3#010111b)./:1+ signum type ''[x]}flip c`x`y
.[{x+til each 0|y-x-1}]

.[{x+til each 0|y-x-1}]

.[{x+til each 0|y-x-1}]

.[{x+til each 0|y-x-1}]

.[{x+til each 0|y-x-1}]

.[{x+til each 0|y-x-1}]

{({x+til each 0|y-x -1}.;.z.s)(3 3#010111b)./:1+ signum type ''[x]}

Notice that the lambda is unary, which means .z.s is unary, which
means that the core lambda itself



140 post atomic

{x+til each 0|y-x-1}

has to be projected by Apply. Now that we have a list of functions
to apply to the argument pairs it remains only to Apply At Each to
the list of pairs.

Putting it together:

rng6 :{[ args]

e:(3 3#010111b)./:1+ signum(type '')args; /Each?

f:({x+til each 0|y-x -1}.;.z.s)@e; /fns

f'args }

q)rng6 flip c`x`y
3 4 5 6 7

,3

`long$()
(3 4 5 6 7;4 5 6 7)

(3 4 5 6 7;3 4 5 6 7 8)

(3 4 5 6 7;4 5 6 7 8)

((3 4 5;4 5);7 8)

Why put effort into making a function iterate implicitly in this
way?

For the same reason q does. When your lower-level functions
handle iteration predictably, you can focus your thoughts on more
rewarding problems.

Writing For-loops and if/then/else constructs is a habit that takes
practice to break.

Don’t simply swap For-loops for Each iterators. Consider first
whether q already performs your iteration without being told to do
so. Look first to see if you need to specify anything at all.

Familiarise yourself with how the q primitives iterate implicitly.
At first, this effort will distract you from the ‘larger’ problems you
want to solve. Later, having internalised implicit iteration, your
mind will focus on the larger problems more clearly.



Answers to Map iterators

Types of count Each and count each

q)type (count ') / Each -derived function

106h

q)type (count each) / projection

104h

The two types are composition (104h) and an Each-derived function
(106h).

The key distinction here is that Each (') is an iterator and each is a
lambda.

q)type (') / iterator

103h

q)type (each) / lambda

100h

So count' is a derived function, and count each is a projection of
each, but they are both unary and interchangeable.

Each on atoms

q)2 3 4#'"abc" / list; list

"aa"

"bbb"



142 post atomic

"cccc"

q)2 3 4#'"a" / list; atom

"aa"

"aaa"

"aaaa"

q)4#'"abc" / atom; list

"aaaa"

"bbbb"

"cccc"

q)4#'"a" / atom; atom

"aaaa"

q)(4#'"a") ~ 4#"a" / same

1b

So, under scalar extension, for atom arguments, (x f'y)~x f y.



Answers to Accumulators

A list as a test

FIXME

Using the keywords

FIXME

Eratosthenes’ Sieve

Okay, es needs to have Apply projected on it to make a unary so
that we can use Converge.

We still prefer writing es as a binary though, so we don’t have to
decompose the argument into primes and bitmask.

es:{i:y?1b;(x,i+1;y&count[y]#(i#1b),0b)}. / next step

The left argument lists primes identified; the right flags numbers
that are not their multiples. The Apply operator turns it into a
unary that takes the two arguments as a 2-list.

q)es (2;0010101010101010101010b)

2 3



144 post atomic

0000101000101000101000b

The termination condition is that the last prime found exceeds the
square root of x.

sqrt[x]> last first ::

Writing the test as a composition handily has the square root of x
computed just once, when the test is specified.

q)(sqrt [20]> last first ::)es \(2;0010101010101010101010b)

2 0010101010101010101010b

2 3 0000101000101000101000b

2 3 5 0000001000101000101000b

The bits flag the primes left in the sieve.

q)@[;1;1+ where ::]( sqrt [20]> last first ::)es /(2;0010101010101010101010b)

2 3 5

7 11 13 17 19

Putting it together. . .

q){raze@ [;1;1+ where ::]( sqrt[x]>last first ::)es/(2;0b,x#01b)}10000

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 ..


	I 
	yq?
	Hello world
	Pascal’s Triangle
	Fibonacci Series
	Fahrenheit-Celsius

	A whirlwind tour
	Data types
	Functions are first-class objects
	Data structures
	Indexing
	Applying a function
	Index and Index At
	Implicit iteration
	Iteration operators
	Projection
	Lambdas
	Composition

	Level-3 description
	q and kdb+
	How we roll
	I knew that
	Thinking in vectors
	On the beach
	Back to work


	II 
	also
	Questions

	Lists
	List notation
	Indexing lists and dictionaries
	Indexing out of the domain
	Questions

	Parse trees
	Oh, k…

	Apply and Index
	Projections and selections
	Rectangular selections
	Scattered indexing
	Apply and Index
	Rank
	Apply and Apply At
	Trap
	Applicable values
	Amend and Amend At
	Amend At
	Type promotion
	Questions

	Projection
	Questions

	Composition
	Questions

	Implicit iteration
	Binary operators: atomic power
	Which operators and keywords iterate atomically?
	Aggregators
	Questions

	Iterator syntax
	Iterators apply to overloads
	Many binary operators are secretly variadic
	All derived functions have infix syntax
	Assigning a derived function removes its infix syntax
	Keywords for unary application of derived functions
	Keywords for iterators
	Applicable values

	Map iterators
	Questions

	Accumulators
	Rank 2
	Rank 3+
	Rank 1
	Questions


	III Answers
	Answers to Also
	When should a space follow a semicolon?
	When should a semicolon follow an expression?
	What is the last expression in an expression list?
	Is Also actually a binary operator that returns a list?
	Why does the parse tree for (2;3) have enlist as its first item?

	Answers to Lists
	Browning the fox
	Dictionary with a specified default
	Construct a sparse matrix
	Draw an ASCII heat map

	Parse trees
	Answers to Dot
	Leading diagonal from a square matrix
	What q objects can you not apply or index?
	A lambda that returns the rank of a list or function
	Conforming lists
	Promoting type

	Answers to Projection
	Answers to Composition
	Better q style
	Indices of a list or dictionary

	Answers to Implicit iteration
	Iterating over vectors
	Recursive iteration
	Beyond Cond
	Go large

	Answers to Map iterators
	Types of count Each and count each
	Each on atoms

	Answers to Accumulators
	A list as a test
	Using the keywords
	Eratosthenes’ Sieve



